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Foreword

The material presented is this note! is classical. The notes are an extended version of a minicourse
I gave in the Spring 2022 at the KIT Karlsruhe and at the University of Heidelberg. The aim
is to introduce the notions of representation and character varieties, taking into account various
approaches found in the literature. We cover both the analytic and algebraic perspectives and
insist on the symplectic geometry aspects of character varieties at the end of the notes. Most of it
is inspired from [Sik12], [Mon16, §2], [Lab13], and [BGPGWO07].
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Chapter 1

Representation varieties

A representation variety is an analytic, sometimes algebraic, object associated to a finitely generated
group I' and a Lie group G. It consists of the space of group homomorphisms from I' to G. We start
by recalling some generalities about Lie groups, including algebraic groups, and finitely generated
groups. Most of the results later in this note require to restrict the groups I' and G to finer classes.

The relevant notions are presented in the next section.

1.1 Setting: Lie groups and finitely generated groups

1.1.1 Lie groups

A Lie group G is a real smooth manifold with a group structure for which the operations of
multiplication and inverse are smooth maps. Lie groups always admit an analytic atlas, unique up
to analytic diffeomorphism, such that multiplication and inverse are analytic maps'. Lie groups
are not necessarily connected. We denote by G° the identity component of G. The centralizer of
a subset S c G is denoted Z(S) := {ge G : gsg~! = 5, Vs € S}. It is a closed subgroup of G and
hence a Lie subgroup of G. The standard examples of Lie groups are GL(n,R) and GL(n,C), and
all their closed subgroups, called linear Lie groups, which include SL(n,R), SU(p, q¢), Sp(2n,R) or
SO(n,R).

The Lie algebra of a Lie group G is denoted g. Most of the time, we will think of g as the tangent
space to GG at the identity. In various places we will make use of the Lie theoretic exponential map
exp: g — G, which, in the case that G is a linear Lie group, is the matrix exponential map. The
adjoint representation of G on g is denoted by Ad: G — Aut(g) and is defined by

d
Ad(9)(©) == - gexp(t)g~', geG, e
t=0

A Lie algebra g is

e simple if it is not abelian and if its only proper ideal is the zero ideal. Since ideals of g are in

one-to-one correspondence with sub-representations of its adjoint representation, g is simple

IThis is a consequence of the Campbell-Hausdorff formula, see e.g. [Ser06, Chap. TV, §7-8]



if and only if its adjoint representation is irreducible and g is not a one-dimensional abelian

Lie algebra.

o semisimple if it has no nonzero abelian ideals. Equivalently, a Lie algebra is semisimple if it
is a direct sum of simple Lie algebras [Bou98, Chap. I, §6.2, Cor. 1]. By Cartan’s criterion, g

is semisimple if and only if its Killing form

K:gxg—R
(€1,82) = Tr(ad(&1) ad(§2))

is nondegenerate [Bou98, Chap. I, §6.1, Thm. 1].

e reductive if it is the direct sum of an abelian and a semisimple Lie algebra. Equivalently, g
is reductive if and only if its adjoint representation is completely reducible?, which is further
equivalent to g admitting a faithful, completely reducible, finite-dimensional representation
[Bou98, Chap. I, §6.4, Prop. 5].

We call a connected Lie group simple, semisimple or reductive if its Lie algebra is simple,
semisimple or reductive, respectively. Simple Lie groups are semisimple and semisimple Lie groups
are reductive. The groups SL(n,R) for n = 2, Sp(2n,R) and SU(p,q) for p + ¢ = 2 are simple.
The group SO(n,R)° is simple for n = 3,n # 4 and semisimple for n = 4. In contrast, the group
GL(n,R)° is not semisimple for any n > 1 (its Killing form is degenerate). It is however reductive,
because its Lie algebra is the direct sum of the simple Lie algebra of traceless matrices and the
abelian Lie algebra of diagonal matrices. It is worth observing that a connected linear Lie group

G < GL(n,R) is reductive if and only if the trace form

Tr:gxg—-oR
(€1,82) = Tr(&1&2)

is nondegenerate. This can be seen as a consequence of the classification of semisimple Lie algebras
and [Bou98, Chap. I, §6.4, Prop. 5]. The previous statement also holds for connected linear Lie
groups G ¢ GL(n,C). If the (in this case, complex-valued) trace form is nondegegenrate, then so is
its real part R(Tr): g x g — R which gives a nondegenerate, symmetric, Ad-invariant, real-valued
bilinear form.

A Lie group is called a complex Lie group if it has the structure of a complex manifold and the
group operations are holomorphic. Standard examples of complex Lie groups include GL(n, C) and
SL(n, C).

1.1.2 Quadrable Lie groups

An important class of Lie groups for the purpose of this work are those that admit a nondegenerate,
symmetric and Ad-invariant pairing on their Lie algebra. Such Lie groups carry different names

throughout the literature, see [Oval6] for an overview. We opt for the name quadrable.

2Recall that a completely reducible representation is a representation that decomposes as a direct sum of irreducible
representations. Such representations are sometimes called semisimple.



Definition 1.1.1 (Quadrable Lie groups). A Lie group G is called quadrable if there exists a
bilinear form (also called pairing)

B:gxg—R
which is nondegenerate, symmetric and Ad-invariant.

Quadrable Lie groups are common among the standard Lie groups. For example, all semisimple
Lie groups, and more generally all reductive Lie groups, are quadrable. Indeed, a nondegenerate,
symmetric and Ad-invariant bilinear form on a reductive Lie algebra can be taken to be the Killing
form on the semisimple part and any nondegenerate, symmetric bilinear form on the abelian part.
Alternatively, one may consider the trace form associated to a faithful, finite-dimensional represen-
tation® of g. We point out that not all quadrable Lie groups are reductive, see [Gol84, Footnote p.
204].

Example 1.1.2. For instance, G = SL(2,R) is quadrable. We usually chose to work with the
pairing given by the trace form: Tr: sloR x slbR — R, (£1,&) — Tr(£1€2). The trace of a matrix

is invariant under conjugation, so the trace form is Ad-invariant. In the basis

1 0 0 1 0 0
EIQR = 3 ) ’
0 -1 0 0 10
the trace form is given by the pairing 2z1x9 +y1y2 +2122. It is clearly symmetric and nondegenerate.

Actually, in this case, the pairing Tr: slbR x slbR is also positive-definite.

Example 1.1.3. The Heisenberg group H is an example of a non-quadrable Lie group. Recall that

H is defined to be the group of strictly upper triangular 3 x 3 real matrices:

1 a b
H = 0 1 c¢|:a,b,ceR
0 0 1

o O O
o O =

0
1|l(v)=v, (1.1.1)
1

3The trace form of a representation p: g — GL(n,R) is the symmetric bilinear form g x g — R given by
(&1,&2) — Tr(p(&1)p(€2)). For instance, the Killing form is the trace form of the adjoint representation.



and

Ad (X)=X, Ad Y)=Y + Z (1.1.2)

O O =
S =
= o O
o O =
S =
= o O

So, because of (1.1.1), any symmetric and Ad-invariant bilinear form B: h x h — R, must satisfy
B(X,Z)=B(X—-Z,Z)and B(X,Y)=B(X - Z2,Y)
which implies B(Z, Z) = 0 and B(Y, Z) = 0. Moreover, because of (1.1.2), it must also satisfy
B(X,Y) = B(X,Y + Z)

and thus B(X,Z) = 0. This shows that B is degenerate.

1.1.3 Algebraic groups

A group G is called an algebraic group if it is an algebraic variety* and if the operations are regular
maps. The Zariski closure of any subgroup of G is an algebraic subgroup [Mill7, Lem. 1.40] and
any algebraic subgroup of G is Zariski closed [Mill7, Prop. 1.41]. For instance, the centralizer Z(S)
of a subset S ¢ G is Zariski closed and hence an algebraic subgroup. All algebraic groups over the
fields of real or complex numbers, respectively called real or complezx algebraic groups, are also Lie
groups, see [Mil13, III, §2] and references therein. Let K denote either R or C. The group GL(n, K),
and all its Zariski closed subgroups, such as SL(n,K), Sp(2n,K) or SO(n,K), are algebraic groups.
They are called linear algebraic groups. Algebraic groups, however, are not necessarily linear (for
instance, elliptic curves are non-linear algebraic groups). The group SU(p,q) is a real algebraic
group, but is not a complex algebraic variety, see e.g. [SKKTO00, Exercise 1.1.2].

Any algebraic group contains a unique maximal normal connected solvable subgroup called the
radical, see [Mill7, Chap. 6, §h]. A reductive algebraic group is a connected algebraic group whose
radical over C is an algebraic torus, i.e. isomorphic to (C*)™ for some n > 0. A reductive algebraic
group over the fields of real or complex numbers is a reductive Lie group in the previous sense,
hence quadrable [Mill3, II, §4].

Connected linear algebraic groups G c GL(n,C) are reductive if and only if the trace form
gxg— C, (&,&) — Tr(£1€) is nondegenerate. In particular, SL(n,C) for n = 2, Sp(2n,C) and
SO(n,C) for n = 3 are reductive algebraic groups.

1.1.4 Finitely generated groups

The second ingredient of a representation variety is a finitely generated group I'. Finitely generated
groups are always equipped with the discrete topology. Our guiding example of finitely generated

groups are surface groups.

4In the context of this work, an algebraic variety is understood to be the zero locus of a set of polynomial equations
over R or C (in other words, algebraic varieties are always affine). We make no assumption about irreducibility and, in
particular, we don’t distinguish algebraic varieties and algebraic sets. Morphisms of algebraic varieties are restrictions
of polynomial maps and are called regular maps.



Definition 1.1.4 (Surface group). Let g = 0 and n > 0 be two integers. A group is called a surface

group if it can presented as

g9

Tgmn i= <a1,b1,...,ag,bg,cl,...,cn : H[ai,bi] . ch = 1>, (1.1.3)
j=1

i=1

where [a;, b;] = aibiaflbfl denotes the commutator of a; and b;. If n = 0, then it is called a closed

surface group.

The closed surface groups 7y ¢ are pairwise non-isomorphic (because their cohomology with real
coefficients differs in degree 1), non-free for g > 1 and non-abelian for g > 2. If n > 1, then the
surface group g, is isomorphic to the free group on 2g + n — 1 generators. The name “surface

group” is explained by the following lemma.

Lemma 1.1.5. Let 3, , denote a connected orientable topological surface of genus g = 0, with

n = 0 punctures. The fundamental group of ¥4, is isomorphic to my .

Proof. The proof for the case n = 0 is explained in [Labl3, Thm. 2.3.15]. Its generalization to
punctured surfaces can be understood in two steps. First, observe that a sphere with n > 1
punctures is homotopy equivalent to the wedge of n — 1 circles. Hence, its fundamental group is
the free group on n — 1 generators. Similarly, a surface of genus g with one puncture is homotopy
equivalent to the wedge of 2g circles. Thus, its fundamental group is the free group on 2g generators.
Now, note that 3, ,, is the union of two sub-surfaces ¥, 1 and 3¢ ,+1. The conclusion now follows

from Van Kampen’s Theorem. O

The generators ¢; in (1.1.3) will play a central role later in Section 4.2 in the context of relative
representation varieties. They should be thought of as homotopy classes of based loops enclosing

the 7th puncture of X .

1.2 Definition

Definition 1.2.1 (Representation variety). The representation variety associated to a finitely
generated group I' and a Lie group G is the set of group homomorphisms from I'" to G and is
denoted by

Hom(T', G).

The elements ¢ € Hom(T', G) are called representations.

The topology on the representation variety Hom(T', G) is defined to be the subspace topology
induced by the compact-open topology on the space G' of all (necessarily continuous) functions
I'-G.

Let (v1,...,7) be a set of generators of I'. We introduce the subspace

X([T,G) = {(qﬁ('yl)7 .. .,gb(wn)) iQ€ Hom(RG)} c G".



Lemma 1.2.2. Let G be a Lie group equipped with an analytic atlas. The set X(I',G) is an
analytic subvariety’ of G™ and is homeomorphic to Hom(I',G). In particular, Hom(T,G) has a
natural structure of analytic variety and the structure does not depend on the choice of generators
of T.

Proof. Let R = {r;} denote a (maybe infinite) set of relations for the generators ~q,...,v,. Each
relation r; defines an analytic map r;: G™ — G because multiplication and inverse are assumed to
be analytic operations on G. The map r; is called a word map. The set X (T',G) is the analytic
subset of G™ cut out by the relations r;(g1,...,9n) = 1 for every i.

Since a group homomorphism ¢: I' — G is determined by the images of a set of generators of

I', the map

II: Hom(I',G) —» X(T',G)
¢ = (QS(’Yl)a ceey ¢(7n))

is a bijection. We prove that II is a homeomorphism. Recall that all the sets
V(K,U):={f:T' - G: K cT finite, U c G open, f(K)c U}

form a sub-basis for the compact-open topology on Hom(I', G). To see that II is a continuous map,

observe that, for a collection of open sets Uy, ..., U, c G,
I (X(T,G) AUy x...x Uy) =Hom(I,G) n [ V({7}, Us).

To prove that the inverse map II7! is also continuous, note that any element k € T, seen as a word
in the generators ~v1,...,v,, determines an analytic function k: G™ — G. Now, given a finite set

K c T and an open set U c G, we have

I (Hom(T', G) n V(K,U)) = X(I',G) n () k~1(U).
keK
We conclude that both II and its inverse are continuous. Hence, II is a homeomorphism.

If (4,...,7,) is another set of generators of I' and X'(I", G) is the associated space, then the
map from X (T, G) to X'(T', G) defined as the composition

X(T,G) » Hom(T',G) —» X'(T', G)

is an isomorphism of analytic varieties. Indeed, the map sends (¢(71), ol (b(vn)) to (qb(’yi), cey (;5(7;,)).
Now, since 7} is a word in the generators vy, . . ., yn, it follows that ¢(v}) is a word in ¢(y1), . . ., ¢(7n)-

This shows that the map is analytic because word maps are analytic by assumption on G. O

Lemma 1.2.3. Assume that G has the structure of a real or complex algebraic group, then X (I, G)
is an algebraic subset of G™. In particular, Hom(T', G) has a natural structure of real or complex

algebraic variety and the structure does not depend on the choice of generators of T'.

5An analytic variety is understood to be the zero locus of a set of analytic functions over R or C.



Proof. The argument is analogous to the proof of Lemma 1.2.2. The key observation is that the

relations R = {r;} give regular maps r;: G — G by assumption on G. O

Remark 1.2.4 (Finitely generated versus finitely presented). Since we assumed I' to be finitely
generated, and not finitely presented, the set of equations that define X (I', G) might be infinite.
However, Hilbert’s basis theorem implies that any algebraic variety over a field can be described as

the zero locus of finitely many polynomial equations, see e.g. [SKKT00, §2.2].
Remark 1.2.5 (Standard topology versus Zariski topology). If G is a real or complex algebraic

group, then it is also a Lie group, as mentioned earlier. This means that the representation variety
Hom(T', G) has both the structure of an analytic variety and of an algebraic variety. The underlying
topology of the analytic structure is called the standard topology and that of the algebraic structure
the Zariski topology. The standard topology on an algebraic variety is always Hausdorff. The
Zariski topology is coarser than the standard topology. Indeed, Zariski open sets are open in the
standard topology because polynomials are continuous functions. A nonempty Zarsiki open set is

also dense in both the standard and the Zariski topology.

Example 1.2.6 (Surface groups). Representations m,, — G typically arise as holonomies (or
monodromies) of (G, X)-structures on 3, ,,, see [Gol21] for further details. Not all the representa-
tions 7y, — G are holonomies of (G, X)-structures. However, if n = 0, then the set of holonomies
is an open subset of Hom(mg o, G) [Gol21, Cor. 7.2.2]. For instance, if G = PSL(2,R), then the
holonomies of hyperbolic structures on the closed surface 3,0, g = 2, are precisely the discrete
and faithful representations in Hom(m, o, PSL(2,R)). They form two connected components of the

representation variety.

In the vocabulary of category theory, we can say that representation variety is a bifunctor from
the product of the category of finitely generated groups and the category of Lie/algebraic groups
to the category of analytic/algebraic varieties. This is a consequence of Lemmata 1.2.2 and 1.2.3,

and of the following.
Lemma 1.2.7. Let T be a finitely generated group and G be a Lie/algebraic group.

1. If7: Ty — Ty is a morphism of finitely generated groups, then the induced map 7*: Hom(I's, G) —

Hom(T'1, G) is an analytic/regular map.

2. If r: Gy — Go is a morphism of Lie groups or of algebraic groups, then the induced map

ry: Hom(T',G;) — Hom(T', G2) is an analytic map or a regular map, respectively.

Proof. The second assertion is immediate. To prove the first statement, note that if (71,...,v}) is
a set of generators for I'y and (72,...,72,) is a set of generators for I'y, then (7*¢)(v}) = ¢(7(7}))

is a word in ¢(9%),...,¢(v2). Word maps are analytic, respectively regular, and thus so is 7%. [

1.3 Symmetries

The representation variety Hom(I', G) has two natural symmetries given by the right action of
the group Aut(I') of automorphisms of I" by pre-composition and the left action of Aut(G) by
post-composition:

Aut(G) & Hom(T, G) © Aut(T).

10



An immediate consequence of Lemma 1.2.7 is

Lemma 1.3.1. The actions of the groups Aut(I') and Aut(G) on Hom(I',G) preserve its ana-

lytic/algebraic structure.

There is a normal subgroup of Aut(G) that is of particular interest: namely, the subgroup
of inner automorphisms of G, denoted Inn(G). Recall that an inner automorphism of G is an
automorphism given by conjugation by a fixed element of G. In particular, Inn(G) = G/Z(G),
where Z(G) denotes the centre of G (which is a closed and normal subgroup of G). The action of
Inn(G) on Hom(I', G) is relevant in many concrete cases. For instance, the holonomy representations
mentioned in Example 1.2.6 are really defined up to conjugation by an element of G and so it makes

sense to see them as elements of the quotient
Hom(T', G)/Inn(G). (1.3.1)

The quotient (1.3.1) is the prototype of the notion of character variety introduced below.
The action of Aut(I') on the representation variety descends to an action of Aut(I')/Inn(I") on
the quotient (1.3.1). The group Aut(I")/Inn(T") is denoted Out(I") and is called the group of outer

automorphisms of T'.

Example 1.3.2 (Surface groups). The group of outer automorphisms of the surface group mg .
has a particular significance. It contains the (pure) mapping class group of the surface ¥, ,, as a
subgroup. This is known as the Dehn—Nielsen Theorem. We develop this observation further in
Section 6.2.

1.4 Zariski tangent spaces

In this section, we would like to determine the Zariski tangent spaces to representation varieties.

We start by recalling the classical notion of Zariski tangent spaces for analytic varieties in R™.

Definition 1.4.1 (Zariski tangent spaces). Let X < R™ is an analytic variety defined as the zero

locus of some analytic functions fi,..., fin: R® — R. The Zariski tangent space at x € X is the
kernel of the m x n Jacobi matrix
(afi (x)) . (1.4.1)
al‘j i

Equivalently, the Zariski tangent space at = consists of all tangent vectors z’(0) tangent to a
smooth path z(¢) inside R” with x(0) = = and that satisfies the relations f; = 0 up to first order
by which we mean that f;(x(0)) =0 and %|t:0 fi(z(t)) = 0.

To specialize to the case of representation varieties, we need a notion of Zariski tangent spaces
for analytic varieties in the infinite product G'. We follow the approach of [Kar92] and refer the
reader to that paper for more details. The relevant notion here is that of real valued ringed space.

Definition 1.4.2 (Real valued ringed space). A real valued ringed space is a topological space with

a sheaf of real valued continuous functions.

11



Examples of real valued ringed spaces include smooth manifolds together with the sheaf of
smooth functions, analytic varieties together with the sheaf of analytic functions or algebraic vari-
eties together with the sheaf of rational maps. There is a notion of Zariski tangent space for real
valued ringed spaces that generalizes the notion of tangent spaces for manifolds and that of Zariski
tangent spaces for analytic and algebraic varieties.

On the space G', one can define a notion of smooth functions. A function F: GF' — R is
called locally smooth if it is locally a smooth function of a finite number of coordinates. The space
G", together with the sheaf of locally smooth real-valued functions on G', is a real valued ringed
space. In the case of G, the Zariski tangent space at any point can be identified with g' via left
translation.

The representation variety Hom(I', G) is the subspace of the space G' cut out by the equations

o(xy)o(y) 'o(z) =1, Va,yel.

As such, it has an induced ringed space structure. Previously, in the context of Lemma 1.2.2, we
explained that Hom(I', G) inherits its structure from the embedding inside G™ that depends on a
choice of generators for I'. In contrast, the embedding Hom(T', G) = GT does not require to fix a

set of generators for I'. The disadvantage is that GT, unlike G™, is an infinite product.

Lemma 1.4.3 ([Kar92]). Fiz a set of n generators of I' and let F,, be the free group on n generators.

The following diagram is a commutative diagram of real valued ringed spaces:

/

Gn
Hom(T', G) Gt
\ - /
In particular, the structures induced by G™ and GT on Hom(T', G) coincide.

We refer the reader to [Kar92] for a proof of Lemma 1.4.3.

Working with the embedding Hom(T', G) = G, we can determine the Zariski tangent space to
the representation variety without referring to a presentation of I'. Let Fy - G — G be defined by
Fpy(f) := f(zy) f(y)~' f(z)~!. The Zariski tangent space to Hom(T', G) at ¢ is the intersection of
the kernels of the linear forms DyF; ,: g" — g for all z,y € ' (each tangent space to G is naturally

identified to g via left translation).

Lemma 1.4.4. It holds that

Dy Fyy(v) = v(zy) — v(z) — Ad(d(x))v(y)

forve gt and ¢ € Hom(T', G).

12



Proof. By definition, we have that

d

quFz,y(U) = dt . Fm,y(eXp(tv)¢)
t=

il exp(tv(zy))d(zy)d(y) " exp(—tv(y))p(z) " exp(—tv(z))

v(zy) —v(r) — Ad(e(x))v(y)-

Here exp: g — G denotes the Lie theoretic exponential map. O

We conclude

Corollary 1.4.5 ([Gol84], [Kar92]). The Zariski tangent space to Hom(T', G) at ¢ is
Ty Hom(T',G) = {ve g :v(zy) = v(z) + Ad(¢(z))v(y), Vz,yel}.

Corollary 1.4.5 can be reformulated in terms of group cohomology®. A representation ¢ €

Hom(T, G) equips g with the structure of a I'-module by
r-% G2 Aut(g).

The resulting I'-module is denoted by gg. The set of 1-cochains in the bar complex that computes
the cohomology of T' with coefficients in g, is g'', see Appendix B.2 for more details on the bar

complex. The space of 1-cocycles is

Zl(F,g¢) = {11 egl tv(zy) = v(z) + Ad(o(2))v(y), Va,ye F}

and thus identifies with the Zariski tangent space to Hom(T', G) at ¢. The space of 1-coboundaries,
defined by

B'D,gy) = {veg :3eg, vle)=¢—Add(@)E VYrell,
also plays a role in this context. They can be identified with the Zarisiki tangent space to the

Inn(G)-orbit of ¢ € Hom(I', G) at ¢ (recall from Section 1.3 that Inn(G) acts on the representation
variety by post-composition). We denote this orbit by

O¢ C HOH](F, G)
Proposition 1.4.6 ([Gol84], [Kar92]). The Zariski tangent space to Oy at ¢ is
Ty0p = {veg" :3eq, v(z)=£—Ad(g(x))E, VreT}.

Proof. The orbit Oy is a smooth manifold isomorphic to the quotient of G by the stabilizer of ¢
for the conjugation action. The stabilizer of ¢ is the centralizer Z(¢) := Z(¢(T")) of ¢(I') inside G,
which is a closed subgroup of G. In particular, the Zariski tangent space to Oy at ¢ coincides with

the usual notion of tangent space.

6We provide an introduction to group (co)homology, containing all the relevant notions for this work, in Appendix
B.
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A smooth deformation of ¢ inside O is of the form ¢; = g(t)¢pg(t)~!, where g(t) is a smooth
1-parameter family inside G with g(0) = 1. The tangent vector to ¢; at ¢t = 0 is the coboundary
v(z) = £ — Ad(o(x))€ where € € g is the tangent vector to g(t) at t = 0. Conversely, for any £ € g,
the coboundary v(xz) = £ — Ad(¢(x))€ is tangent to exp(t€)d exp(—t€) at t = 0. O

Observe that B!(T, g4) can be identified with the quotient g/3(¢), where 3(¢) is the Lie algebra
of Z(¢). In particular, it holds that

dim B'(T, g¢) = dim Oy = dim G — dim Z(¢). (1.4.2)
We mention that the quotient

H (Fa g¢) =z (F7 g¢)/Bl(F7 g¢')

is known as the first cohomology group of the group I' with coefficients in the I'module gy intro-
duced in Definition B.2.

Example 1.4.7 (Surface groups). In the special case of a closed surface group, one can obtain
the conclusion of Corollary 1.4.5 from the embedding Hom(my o, G) © G*9. Let ¢ € Hom(m, 0, G)
and let A; := ¢(a;) and B; := ¢(b;), where a; and b; are the generators of 7y o in the presentation
(1.1.3). The Zariski tangent space to Hom(m, o, G) at ¢ is isomorphic to the kernel of the differential
of the map

F:G% - @
g
(X1, X, Y1, Yy) = [ [0, Vi)
i=1
at (Ay,...,Ag, Bi,..., By). A simple computation shows that the kernel of D4, p,)F corresponds
to the subset of g29 that consists of all those (a1, ..., a4, B, .., 3,) such that

(a1 + Ad(Al)ﬂl) —Ad ([Al, Bl]) (51 + Ad(Bl)Oél)
+Ad ([A1, B1]) (a2 + Ad(A2)B2) — Ad ([A1, B1][A2, B2]) (B2 + Ad(Bs)as)
+...

— zg] Ad ﬁ[Aj, Bj]) (o + Ad(A)B;) — Ad <ﬁ[Aj, Bj]> (8; + Ad(B;)a;) (1.4.3)
i=1 =1 j=1

vanishes, compare [Lab13, Prop. 5.3.12]. Once again, we identified T4,G =~ g and T5,G = g via left
translation.

To see the correspondence between this description of the Zariski tangent space and that of
Corollary 1.4.5, we proceed as follows. First, if one defines v: 750 — g by v(a;) := «a; and
v(b;) := B; for (ou,...,aq, B1,...,B,) that satisfy (1.4.3), and extend to 7y using v(zy) = v(x) +
Ad(¢(z))v(y), then v defines an element of Z'(m,0,94). Indeed, it is sufficient to check that
v([1[a:, b:]) = 0. If one develops v([[[as, b;]) using v(zy) = v(z) + Ad(¢(x))v(y) and v([z,y]) =
v(zy) — Ad(¢([x,y]))v(yx), then one gets that v([][as;,b;]) = 0 is equivalent to (1.4.3) vanishing.
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Conversely, given v € Z'(m,0,84), then (v(a1),...,v(ay),v(b1),...,v(by)) satisfies 1.4.3 by the

same argument as above.

1.5 Smooth points

Smooth points of analytic varieties in R™ are defined as follows.

Definition 1.5.1 (Smooth points). A point z of an analytic variety X c R™ is a smooth point if
there is an open neighbourhood U < X of = such that U is an embedded submanifold of R™.

Using the Implicit Function Theorem, we can reformulate the condition and say that x is a
smooth point of X if and only if the rank of the Jacobi matrix (1.4.1) at x is maximal. By the
Rank-Nullity Theorem, this happens if and only if the dimension of the Zariski tangent space to X
at x is minimal. If every point of an analytic variety is smooth, then it is an analytic manifold.

In the context of representation varieties, we will use the characterization of smooth points as
the ones that minimize the dimension of the Zariski tangent space. For instance, if ' is a free
group, then Hom(T',G) is an analytic manifold because of the absence of relations (recall from

Lemma 1.2.2 that representation varieties are analytic varieties).
Lemma 1.5.2. The set of smooth points of Hom(T', G) is invariant under the Inn(G)-action.

Proof. The action of G on itself by conjugation is analytic. Therefore, it preserves smooth neigh-
bourhoods of points inside Hom(I',G). We can give an alternative argument by observing that

1

the Zariski tangent spaces at ¢ and g¢g~ are isomorphic as ['-modules, and hence have the same

dimension. The isomorphism is given by

Zl (F7 g¢) - Zl (Fa ggd)g_l)
v — Ad(g)v. O

In the case that I' = 7y ¢ is a closed surface group and G is quadrable, it is possible to describe

the smooth points of the representation variety explicitly.

Proposition 1.5.3 ([Gol84]). Let G be a quadrable Lie group. The smooth points of Hom(mg 0, G)

are those representations ¢ satisfying
dim Z(G) = dim Z(9),

where Z(G) denotes the centre of G and Z(¢) is the centralizer of ¢(my0) inside G (the dimensions

are to be understood in terms of manifolds here).

Proof. We compute the dimension of the Zariski tangent space to Hom(m, o, G) at ¢. We use the
identification with Z!(m, 0, gs) provided by Corollary 1.4.5. Recall that the group cohomology of
mg,0 With coefficients in g4 is isomorphic to the de Rham cohomology of the surface ¥, with
coefficients in the flat vector bundle E, associated to g4 (i.e. the adjoint bundle of the principal

G-bundle (X, x G)/mg0 built from ¢, see [Gol84] for more details):
H* (7Tg’0, g¢) = H;R(ZQ,O; E¢)
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In particular, it vanishes in degrees larger than 2.

Goldman observed that the quantity
dim H(7,0, 9) — dim H' (7g,0, 8¢) + dim H? (7.0, 95) (1.5.1)

is independent of ¢. Indeed, using that the space of cochains C*(X, 9, E) in the de Rham complex
is finite-dimensional in every degree, we conclude that (1.5.1) is equal to the alternating sum of
the dimensions of the spaces of cochains in the de Rham complex. The latter is independent of ¢,
because the structure of 7y ¢o-module of g4 only intervenes in the differential, see the definition of
the bar resolution (B.2). If ¢ is the trivial representation, then gy is the trivial w4 o-module and

(1.5.1) is equal to the Euler characteristic of X, ¢ times the dimension of G. We conclude
dim H' (7.0, 90) = (29 — 2) dim G + dim H°(7,.0, 94) + dim H*(7,0, 9)-

Poincaré duality (see Appendix B.7) implies H?(7,.0,94) = H%(7.0, g;‘;)* The existence of a non-
degenerate, Ad-invariant, symmetric, bilinear form on g implies that g, = g’;) as g 0-modules.
Hence, dim H%(7y0,94) = dim H*(7y0,084). It is easy to see that H%(m,0,94) is the space of
Ad(¢)-invariant elements of g, namely 3(¢). Hence

dim H' (7.0, 9¢) = (29 — 2) dim G + 2dim Z(¢).

Recall from (1.4.2) that the dimension of B'(7,0,9s) is equal to dim G — dim Z(¢). Finally, we
obtain
dim Z' (740, 94) = (29 — 1) dim G + dim Z(¢).

Since Z(G) c Z(¢), it holds that dim Z(G) < dim Z(¢), and we conclude that ¢ minimizes the
dimension of its Zariski tangent space if and only if dim Z(G) = dim Z(¢). O

Alternative proof. Instead of using group cohomology (and the embedding of the representation
variety in G'), one can alternatively compute the dimension of the Zariski tangent space at a
representation ¢ from the embedding Hom(my 0, G) © G?9, compare [Labl3, Prop. 5.3.12]. The
infinitesimal kernel of the unique relation of a closed surface group is described by (1.4.3), where
A; = ¢(a;) and B; = ¢(b;).

Consider the orthogonal complement V' in g, with respect to the Ad-invariant pairing B coming
from the quadrability of G, of the image of the map u: g?9 — g defined by (1.4.3). A simple

computation leads to
g
N(ah <oy Qg Bl; cee 3189) = Z (H Ad ([Aj7 B]])) (ai - Ad(AzBlAl_l)az)
i=1 \j<i

_ Z (H Ad ([4;, Bj])> (B — Ad(B;A;B;Y)3:).

j<i

The orthogonal complement of the Lie algebra of the centralizer Z(g) of any element g € G is equal
to the image of the map g — g given by & — £ — Ad(g)¢. Therefore, using the general fact that
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Z(ghg=') = gZ(h)g~! for any g, h € G, we obtain that V must contain the Lie algebra of

ﬁ [TAd ([4;, Bj]) (Z(AiBiA; ') n Z(AiBiA:B; P A 1))

i=1j<i

= ﬂ HAd (45, B;]) Ad(AiBy) (Z(Bi) n Z(A;))

1=17j<1

= NTTA4 (45, B (2(B) n 2(4)

Hence, 3(¢) c V. The reverse inclusion is obvious. Using the Rank-Nullity Theorem, we conclude,

as before, that the dimension of the Zariski tangent space at the representation ¢ is
dim Z' (7,0, 94) = dim Ker(p) = (2g — 1) dim G + dim Z (). O

Proposition 1.5.3 applies to closed surface groups. In Proposition 4.2.5 below, we will discuss

an analogous description of smooth points for fundamental groups of punctured surfaces.
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Chapter 2

The action by conjugation

In this section, we elaborate on the action of Inn(G) on Hom(I',G) by post-composition. We

sometimes refer to this action as the the conjugation action of G on the representation variety.

2.1 Freeness

The action of Inn(G) = G/Z(G) on Hom(T',G) is never free, since the trivial representation is
always a global fixed point. It is easy to see that the stabilizer of a representation ¢ € Hom(T', G)
is Z(¢)/Z(G). In particular

Lemma 2.1.1. The Inn(G)-action is free on the Inn(G)-invariant subset that consists of all the

representations ¢ such that

There is a neat characterization of the points where the action is locally free. Recall that the

action of a topological group on a set X is locally free at x € X if the stabilizer of x is discrete.

Proposition 2.1.2 ([Gol84]). The action of Inn(G) on Hom(I', G) is locally free at ¢ if and only
if

dim Z(G) = dim Z ().
Proof. The action of Inn(G) on Hom(T', G) induces, for any representation ¢, a surjective linear

map Jnn(G) — TyOy, where Inn(G) denotes the Lie algebra of Inn(G) and O the Inn(G)-orbit of
¢. The map is given by

d
€ | elie)o)

Observe that the action of Inn(G) on Hom(I', G) is locally free at ¢ if and only if the induced map
Jnn(G) — T,0y is injective. Since the map is always surjective, this is equivalent to asking that
both spaces IJnn(G) and T,O, have the same dimension. The dimension of Jnn(G) is dim G —
dim Z(G) and the dimension of T4y is dim G — dim Z(¢), as computed in (1.4.2). Hence, the
dimensions coincide if and only if dim Z(G) = dim Z(¢). O
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Example 2.1.3 (Surface groups). It is striking that the condition of Proposition 2.1.2 coincides
with that of Proposition 1.5.3. This means that if I' = 74 is a closed surface group, then the

smooth points of Hom(m, o, G) are precisely those where the action of Inn(G) is locally free.
Proposition 2.1.2 motivates the following definition.

Definition 2.1.4 (Regular representations). A representation ¢ € Hom(T', G) is called regular if
dim Z(G) = dim Z(¢).

We denote by Hom™®(T', G) the Inn(G)-invariant subspace of regular representations. If it further
holds that Z(G) = Z(¢), we say that ¢ is very regular. The Inn(G)-invariant subspace of very

regular representations is denoted by Hom"®°8(T", G).

We will see later that if G is a reductive algebraic group, then most representations are regular,

see Proposition 2.2.9.

Example 2.1.5. In the case G = PSL(2,R), the representations ¢: I' — PSL(2,R) that are not
regular are of a particular kind. We use the description of centralizers in PSL(2,R) provided by

Lemma A.9. It tells us that a non-regular representation is of one of the following kinds:
1. ¢ is the trivial representation.
2. The elements of ¢(T") are rotations around the same point of H and Z(¢) = PSO(2,R).
3. The elements of ¢(I") fix a common geodesic in H and Z(¢) = R.o.
4. The elements of ¢(T") fix the same point in the boundary of H and Z(¢) =~ R.

As soon as the image of ¢(I') contains, for instance, two elements of different nature (elliptic,
hyperbolic or parabolic) or two rotations around different points, then Z(¢) = Z(PSL(2,R)) is

trivial and ¢ is regular, actually very regular.

2.2 Properness

The conjugation action of G on Hom(I', G) is in general not proper.

Example 2.2.1. Consider the case where I' = F, = {a,b) is the free group on two generators
and G = PSL(2,R). Let ¢1: F» — PSL(2,R) be the representation given by ¢1(a) = part (see
(A.6)) and ¢1(b) is the identity. Let ¢o denote the trivial representation. Since the closure of the

conjugacy class of any parabolic element of PSL(2,R) contains the identity, we observe that
¢2 € Oy, N Op, and  {¢2} = Og,.

So, the orbits Oy, and Oy, cannot be separated by disjoint open sets in the (topological) quotient
Hom(F3, PSL(2,R))/Inn(PSL(2,R)). In particular, the quotient is not Hausdorff and the conjugacy
action of PSL(2,R) on Hom(F5, PSL(2,R)) is not proper.
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Example 2.2.1 hints at the pathological behaviour of representations whose image lies in a

parabolic subgroup. This is essentially a worst case scenario, as we explain below.

Definition 2.2.2 (Borel and parabolic subgroups). Let G be an algebraic group. A Borel subgroup
of G is a maximal, Zariski closed, solvable connected subgroup of G. A Zariski closed subgroup of

G that contains a Borel subgroup is called a parabolic subgroup of G.

By definition, a Borel subgroup of G is automatically a Borel subgroup of G°. Similarly, P is a
parabolic subgroup of G if and only if P° is a parabolic subgroup of G°. If G is connected, then
all parabolic subgroups are connected [Mil17, Cor. 17.49].

Example 2.2.3. Let G = GL(n, C). The subgroup of upper triangular matrices is a Borel subgroup
of G. More generally, the Borel subgroups of GL(n, C) are the ones that preserve a full flag in C*
and the parabolic subgroups are those that preserve a (partial) flag in C™ [Bou05, Chap. VIII, §13].

Definition 2.2.4 (Irreducible representations). Let G be an algebraic group. A representation
¢: T' = G is called irreducible if the image of ¢ does not lie in a proper parabolic subgroup of G.

We denote by Hom™ (T, G) the Inn(G)-invariant subspace of irreducible representations.

Observe that if G = GL(n,C), then ¢ being irreducible in the sense of Definiton 2.2.4 is equiv-
alent to C™ being an irreducible I-module (i.e. ¢ is an irreducible representation in the classical

sense). This is a consequence of Example 2.2.3.

Example 2.2.5. Let G = SL(2,C). The irreducible representations into SL(2,C) can be charac-

terized in terms of traces:

Lemma 2.2.6. A representation ¢: I' — G is irreducible if and only there exists an element
v € [[,T] c T of the commutator subgroup of T' such that Tr(¢(y)) # 2.

A proof of Lemma 2.2.6 can be found in [CS83, Lem. 1.2.1]. The argument relies on the following
observation: if A, B € SL(2,C) are two upper-triangular matrices, then their commutator [A, B] is

upper-triangular and has trace 2 (i.e. upper-triangular with ones on the diagonal).

Definition 2.2.7 (Irreducible subgroups). A subgroup of an algebraic group G is called irreducible

if it is not contained in a proper parabolic subgroup of G.

In particular, a representation ¢: I' — G is irreducible if and only if its image is an irreducible
subgroup of G. The centralizer of an irreducible subgroup in a reductive group G is a finite extension
of Z(G) [Sik12, Prop. 15] (see also [Sik12, Cor. 17]). Hence

Lemma 2.2.8. Let G be a reductive algebraic group. Irreducible representations into G are reqular:
Hom™ (T, G) c Hom™8(T", G).

It is important to note the following

Proposition 2.2.9. Let G be a reductive algebraic group. The subspace of irreducible representa-
tions Hom™ (T, G) is Zariski open in the representation variety Hom(T', G). Moreover, if I' = Tgn
is a surface group, then Hom" (7, ., G) is dense in a nonempty set of irreducible components of
Hom(mg n, G).

20



We refer the reader to [Sik12, Prop. 27 & 29] for a proof. The main result of this section says

that if one restricts to irreducible representations, then the conjugation action of G becomes proper.

Theorem 2.2.10 ([JM87]). Let G be a reductive algebraic group. The Inn(G)-action on Hom™ (T, Q)

1S proper.

We refer the reader to [JM87, Prop. 1.1] and references therein for a proof of Theorem 2.2.10.

Following [JM87], we introduce the notion of good representations.

Definition 2.2.11 (Good representations). Let G be an algebraic group. A representation ¢: I' —
G is called good' if it is irreducible and very regular. We denote by Hom®°°(I', G) the Inn(G)-

invariant subspace of good representations.

Lemma 2.1.1 implies that the Inn(G)-action on Hom®*°Y(T', G) is free and by Theorem 2.2.10 it
is also proper. It is, however, not clear a priori whether good representations exist. However, one

can prove the following

Lemma 2.2.12 ([JM87]). Let G be a reductive algebraic group. The set of good representations

Hom&°Y(T, G) is Zariski open in the representation variety Hom(T, G).

Lemma 2.2.12 is proven in [JM87, Prop 1.3 & Lem. 1.3]. In general, Hom®°Y(T', G) might not
be a smooth manifold. However, it is the case for closed surface groups by Proposition 1.5.3. We

conclude from Theorem 2.2.10 and Lemma 2.1.1 that

Corollary 2.2.13. Let G be a reductive algebraic group. Let I' = w40 be a closed surface group.
The space of good representations HomgOOd(wg,o,G) is an analytic manifold of dimension (2g —
1)dim G + dim Z(G). The Inn(G)-action on Hom®*°Y(w, o, G) is proper and free, and the quotient

Hom®**Y (7, 9, G)/Inn(G)

is an analytic manifold of dimension (2g — 2)dim G + 2dim Z(G).

Note that the dimension of the quotient in Corollary 2.2.13 is always even. This observation
will be relevant later in Section 4 when we discuss the symplectic nature of character varieties.
The notion of irreducible representations can be generalized to the notion of reductive repre-

sentations.

Definition 2.2.14 (Linearly reductive groups). An algebraic group is called linearly reductive if

all its finite-dimensional representations are completely reducible.

Equivalently, over the fields of real or complex numbers, an algebraic group G is linearly reduc-
tive if and only if the algebraic subgroup that consists of the identity component for the Zariski
topology is reductive [Mill7, Cor. 22.43].

Definition 2.2.15 (Completely reducible subgroups). A subgroup of an algebraic group is called

completely reducible if and only if its Zariski closure is linearly reductive.

n [JM87] and [Sik12] a good representation is defined to be a very regular reductive representation (see Definition
2.2.16). If G is reductive, then their definition is equivalent to ours (see Lemma 2.2.18).
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Definition 2.2.16 (Reductive representations). Let G be an algebraic group. A representation
¢: T — G is called reductive (or completely reducible) if ¢(I') ¢ G is completely reducible. We

denote by Hom™(I', @) the Inn(G)-invariant subspace of reductive representations.

In particular, a representation ¢: I' — GL(n,C) is reductive if and only if C™ is a completely

reducible I'-module (i.e. a direct sum of irreducible I'-modules).

Lemma 2.2.17. Let G be a reductive algebraic group. Irreducible representations ¢: I' — G are
reductive:
Hom™ (T', G) ¢ Hom™ (I, G).

Proof. The proof relies on the observation that irreducible subgroups of reductive algebraic groups

are completely reducible. This is proved in [Sik12, §3] using the notion of Levi subgroups. O
The converse of Lemma 2.2.17 is not true in general. However

Lemma 2.2.18. Let G be a reductive algebraic group. A reductive representation into G is irre-

ducible if and only if it is reqular:
Hom™ (T, G) = Hom™4(T', G) n Hom™(T, G).

The reader is referred to [Sik12, Cor. 17] for a proof of Lemma 2.2.18. Reductive representations

can be characterized as follows:

Proposition 2.2.19. Let G be a reductive algebraic group. A representation ¢: I' — G is reductive
if and only if the the Inn(G)-orbit Oy of ¢ is closed in Hom(T', G).

A proof of Proposition 2.2.19 can be found in [Sik12, Thm. 30], based on an argument of
[JM87]. An immediate consequence of Proposition 2.2.19 is that the points of the topological
quotient Hom™(I", @)/ Inn(G) are closed, i.e. it is a 7; space?.

Proposition 2.2.20 ([RS90]). Let G be a reductive algebraic group. The topological quotient
Hom™ (T, G)/Inn(G)

is Hausdorff.

The reader is referred to [RS90, §7.3] and references therein for a proof of Proposition 2.2.20.
Some authors favour the notion of Zariski dense representations over irreducible representations,
see for instance [Labl3], [Mon16].

Definition 2.2.21 (Zariski dense representations). Let G be an algebraic Lie group. A repre-
sentation ¢ € Hom(T',G) is called Zariski dense if ¢(T') is a Zariski dense subgroup of G. It
is called almost Zariski dense if the Zariski closure of ¢(I') contains G°. The Inn(G)-invariant
spaces of Zariski dense and almost Zariski dense representations are denoted HomZd(F,G) and
Hom**(T", G), respectively.

2See Section 3 for a reminder of some notions of separability.
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Recall that a subgroup H of an algebraic groups G is Zariski dense if and only if any regular

function that vanishes on H also vanishes on G.

Lemma 2.2.22. Let G be an algebraic Lie group. Almost Zariski dense representations are irre-
ducible:
Hom®*Y(T", G) ¢ Hom™ (I, G).

Proof. Let ¢: T' — G be almost Zariski dense. By definition, the Zariski closure of ¢(T") contains
G°. In particular, no proper parabolic subgroups of G° can contain the identity component of
the Zariski closure of ¢(I'). Since parabolic subgroups are by definition Zariski closed, no proper

parabolic subgroup of G can contain ¢(I'). O

Example 2.2.23. Let g, ..., a, € (0,27)" be angles such that «y +. . .+, = 2k7 for some integer
k. Let F,, = {a,...,a,y denote the free group on n generators. We consider the representation
¢: F,, —» PSL(2,R) defined by ¢(a;) = rots, (see (A.2)). The representation ¢ is not Zariski
dense because its image lies inside PSO(2,R) which is Zariski closed in PSL(2,R). However, ¢
is irreducible as one can check that ¢(I') has no fixed point in RP' = R?/R*. Consider now the
representation ¢ defined as the composition of ¢ with the inclusion PSL(2,R) < PSL(2,C). Observe
that ¢: F,, — PSL(2,C) is reducible since it fixes [1 : i] € CP* = C?/C*, but it is still not Zariski
dense because its image lies inside PSO(2, C) which is Zariski closed in PSL(2, C).

Lemma 2.2.24. Let G be an algebraic group such that Z(G) = Z(G®). If ¢ € HomaZd(I‘, G), then

¢ is very regular, i.e.

In particular, almost Zariski dense representations are good:
Hom®*4(T, G) ¢ Hom®**°Y(T', G).

Proof. The argument is taken from [Labl3, §5.3]. Denote by Z(Z(¢)) the centralizer of Z(¢) =
Z(¢(T)) in G. Tt is a Zariski closed subgroup of G that contains ¢(T'). Hence, by almost Zariski
density of ¢(T'), it holds G° ¢ Z(Z(¢)) and thus Z(¢) ¢ Z(G®). Since we assumed Z(G°) = Z(G),
we conclude that Z(G) = Z(¢). It now follows from 2.2.22 that almost Zarsiki dense representations
are good. O

It follows from Theorem 2.2.10 and Lemma 2.2.22 that, for a reductive algebraic group G (hence
connected) and I' = 7, o a closed surface group, the Inn(G)-action on the subspace of Zariski dense
representations is free and proper, compare [Labl3, Thm. 5.2.6] and [Monl6, Lem. 2.10]. It is
interesting to note that the resulting quotient, at least in the case when Z(G) is finite, has the
same dimension as the quotient from Corollary 2.2.13.

By way of conclusion, we provide the reader with a Venn diagram that illustrates the different
relations of inclusion between the various notions of representations introduced in this section, see

Figure 2.1.
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Figure 2.1: We assume for simplicity that G is a reductive algebraic group (hence connected). The
two largest families of representations are the regular and the reductive ones. Their intersection is
the set of irreducible representations. A representation that is irreducible and very regular is called
good. Zariski dense representations are good.

2.3 Invariant functions

The real- or complex-valued functions of Hom(T', G) that are invariant under the conjugation action
of G are called invariant functions of the representation variety. We consider the case where G is
an algebraic group over C. The algebra of regular functions on the variety Hom(T', G), a.k.a. its

coordinate ring, is denoted C[Hom(T', G)] and the subalgebra of invariant functions is denoted by
C[Hom(T", G)]°.

In this section, we will only consider the case of a linear algebraic group G € GL(m, C). The main
example of invariant functions are the so-called trace functions (recall that Tr: GL(m,C) — C is a

conjugacy invariant).
Definition 2.3.1 (Trace functions). Let v € I'. The function

Tr,: Hom(I',G) —» C
¢ = Tr(¢(7))-

is called the trace function of v. We denote by T(I', G) the subalgebra of C[Hom(T, G)]¢ generated

by trace functions.

In most cases, as for instance when G is one of the classical complex Lie groups, invariant
functions of the representation variety are generated by trace functions. In other words, T(T',G) =

C[Hom(T, G)]¢. This is a consequence of Procesi’s Theorem (see Theorem 2.3.3 below) on invariants
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of matrices.

Remark 2.3.2. Nagata’s Theorem implies that, if G is a reductive algebraic group, then C[Hom(T', G)]¢
is finitely generated, see for instance [Dol03, Thm. 3.3].

Let K denote either the field of real or complex numbers. We denote by M, (K) the algebra of
m x m matrices with coefficients in K. Let M,,(K)" = M,,(K) x ... x M,,(K) and K[M,,(K)"] be
m- The group GL(m, K)
acts diagonally on M, (K)" by conjugation. For any subgroup G < GL(m,K), the subalgebra of
K[M,,(K)"] that consists of G-invariant polynomials is denoted K[M,, (K)"]¢.

the algebra of polynomial functions in n matrix variables &, = (xﬁj)i’jzl

,,,,,

Theorem 2.3.3 ([Pro76)). The following hold:

e If G € {GL(m,K),SL(m,K)}, then K[M,,(K)"| is finitely generated by trace polynomials
Tr(W), where W is a reduced word in &1, ...,&, of length at most 2™ — 1.

o If G € {O(m,K),SO(m,K)}, then K[M,,(K)"]% is finitely generated by trace polynomials
Tr(W), where W is a reduced word of length at most 2™ —1 in &y, ..., &, and their orthogonal

tmnsposes3 .

o IfG = Sp(2m,K), then K[Ma,,(K)"]% is finitely generated by trace polynomials Tr(W), where

W is a reduced word of length at most 2™ — 1 in &1,...,&, and their symplectic transposes®.

The reader is referred to [Pro76] for the proof of Theorem 2.3.3, see also [DCP17].
Back to the context of representation varieties: Assume that I' admits a generating family

(Y1, -+ y9n), then the embedding +: Hom(I',G) € G™ induces a surjective morphism
1*: C[G"] — C[Hom(T", G)]. (2.3.1)
The morphism 2* maps invariant functions to invariant functions and thus restricts to a morphism

(2*)¢: C[G"]¢ — C[Hom(T, G)]¢. (2.3.2)

G

If we further assume G to be reductive, then (+*)“ is surjective. This is a consequence of the

existence of Reynolds operators, see [Sik13, Rem. 25] or [Hos15, Cor. 4.23]. The morphism (2*)“

maps trace functions to trace functions in the following sense.

Lemma 2.3.4. Let W be a reduced word in the matrices variables &1, ...,&,. It holds that

(@*)(Te(W)) = Trw s, ) -

Proof. The word W induces a word map W: G™ — G. The trace function Tr(W): G™ — C sends
(g1,---59n) to Tr(W(g1,...,9n)). The image (2*)%(Tr(W)) is the invariant function Hom(T, G) —
C given by ¢ — Tr(W(é(y1),--.,0(7n))). Because ¢ is a group homomorphism, it holds that

3The orthogonal transpose of a matrix is the inverse of its transpose. The orthogonal group O(m,K) consists
precisely of the matrices that are equal to their orthogonal transposes.

0 Im
—Im O
m x m identity matrix. The symplectic group Sp(2m,K) consists precisely of the matrices that are equal to their
symplectic transposes.

4The symplectic transpose of a matrix A € Ma,, (K) is the matrix JAtJ, where J = and I,, is the
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Tr(W(d(71),---,0(1n))) = Te(d(W (v, - - - ,7n)), where we now think of W as a function W: I'™ —
I'. We conclude that (¢*)%(Tr(W)) = Trw(y, ... O

Lemma 2.3.5. Let G < GL(m,C) be a reductive linear algebraic group. If the algebra C[G™] is
generated by trace functions, then

C[Hom(T', ] = T(T,G).

Proof. If G is reductive, then (+*)¢ is surjective and so (¢*)¢(C[G"]%) = C[Hom(T',G)]¢. More-

over, (1*)% maps trace functions to trace functions, thus, if C[G™]% is generated by trace functions,

then it holds (+*)%(C[G™]%) = T(T,G). O

Lemma 2.3.6. Let G be one of the reductive groups GL(m,C) or SL(m, C) with m > 2, O(m,C)°
or SO(m, C) with m =3, or Sp(2m,C). Then C[G"]Y is generated by trace functions.

Proof. The inclusion G © M,,(C) induces a surjective morphism C[M,,(C)"]¢ — C[G"]“. Theo-
rem 2.3.3 says that C[M,,(C)"]¢ is generated by trace of words of matrices and their transposes.
In particular, a similar argument as in the proof of Lemma 2.3.5 implies that C[G"] is generated
by traces of words. We used here that the inverse transpose and the symplectic transpose of any

matrix in O(m,C) and Sp(2m, C), respectively, is the matrix itself. O
We conclude

Corollary 2.3.7. Let G be one of the reductive groups GL(m, C) or SL(m, C) withm > 2, O(m, C)°
or SO(m,C) with m = 3, or Sp(2m,C). Then

C[Hom(T', )] = T(T, G).
Example 2.3.8. Let G = SL(2,C). Corollary 2.3.7 says that the algebra of invariant functions
C[Hom(T, SL(2,C))]?“2>©) is generated by Tr, for v € T'. The trace formula Tr(A) Tr(B) =
Tr(AB) + Tr(AB™!) for 2 x 2 matrices gives the relation

Try, Tryy = Tryp g, + Tr'yw;l ’

It is folklore knowledge (see [MS21, §1]) that the trace formula, together with the relation Tr; = 2,
is a complete set of relations. In other words, there is an isomorphism of C-algebras

C[Hom(T', SL(2, C))]***®) = C[X, : v €] /(X1 =2, X0, Xy = Xy = X001 )

2.4 Characters

A character is the analogue of a trace function where a representation is now fixed and v € I is the

variable. We assume again that G ¢ GL(m, C) is a linear algebraic group.
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Definition 2.4.1 (Characters). The character of a representation ¢ € Hom(T', G) is the function

X¢: I' = C
7= Tr(¢(7))

In other words, x4(7) = Tr,(¢). We denote by x(I', G) < CT' the set of all characters of representa-
tions in Hom(T", G) equipped with the subspace topology inherited from the compact-open topology
on CF.

Note that x(I',G) c C! is automatically a Hausdorff space because CT is a Hausdorff space.
Theorem 2.4.2 ([CS83]). The space x(T',G) < C' is a closed algebraic variety for G = SL(2,C).

We refer the reader to [CS83, Cor. 1.4.5] for a proof of Theorem 2.4.2. The natural projection
Hom(T', G) - y(T',G)

factors through the quotient Hom(I', G)/Inn(G). A character does not necessarily determine a
unique conjugacy class of representations. For instance, the two representations of Example 2.2.1

are not conjugate but determine the same character. However, the following is true.

Proposition 2.4.3. Let G < GL(m, C) be a linear algebraic group. Conjugacy classes of irreducible

representations are determined by their characters.

Culler-Shalen provide a proof of Proposition 2.4.3 in [CS83, Prop. 1.5.2] for the case G =
SL(2, C) and claim that the result still holds when SL(2, C) is replaced by GL(m, C). The analogous

result for almost Zariski dense representations can be found in [Lab13, Cor. 5.3.7].
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Chapter 3

Character varieties

The previous sections highlighted the relevance of the quotient space Hom(I', G)/Inn(G). However,
it was also explained that there is no reason to expect that this quotient has any nice structure,
since the action of G by conjugation on the representation variety is non-free and non-proper in
general. The goal of this section is to construct an alternative space, with a nicer structure than the
topological quotient Hom(I', G)/Inn(G) and with a projection from Hom(T', G) that factors through
Hom(T', G)/Inn(G). The specification is to construct the largest possible space, while ensuring some
regularity such as being Hausdorff or being a variety or manifold. The resulting space will be called
a character variety of the finitely generated group I' and the Lie group G. Several constructions
explained below lead to richer structures but require more assumptions on the Lie group G.

We start by recalling the definitions of two separability properties. A topological space X is
said to be

e 71 if for any pair of distinct points in X, each point lies in an open set that does not contain

the other, or, equivalently, X is 77 if the points of X are closed,

e 75 or Hausdorff if for any pair of distinct points in X, there are two disjoint open sets such

that each contains one of the two points.

Note that the quotient Hom(F», PSL(2,R))/Inn(PSL(2,R)) of Example 2.2.1 is not only non-
Hausdorff, but is also not 7;. Indeed, the closure of the orbit of ¢; always contains the orbit of

b2

3.1 Hausdorff quotient

The first approach consists in considering the Hausdorflization the topological quotient. The Haus-

dorffization of a topological space X is basically the largest Hausdorff quotient of X.

Definition 3.1.1 (Hausdorffization). Consider the equivalence relation on X given by « ~ y if and
only if z ~ y for all equivalence relations ~ on X such that X/~ is Hausdorff (such a relation ~

always exists, as one can identify all the points of X). The quotient
Haus(X) := X/~
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is the Hausdorffization of X.

Lemma 3.1.2. The space Haus(X) is a Hausdorff topological space. Moreover, the space Haus(X)
has the following universal property: If Y is a Hausdorff topological space, then any continuous

surjective map X —'Y factors uniquely through the projection X — Haus(X).

Proof. First we prove that Haus(X) is a Hausdorff space. Let z,y € X be two points with x # y.
By definition, there exists an equivalence relation ~ on X with Hausdorff quotient such that z % y.
Since the projections of x and y in X/~ are separable and the map X/~ — X /= is continuous,
the projections of z and y are also separable in X/ ~.

Let now Y be a Hausdorff space and f: X — Y be a continuous surjection. Define an equivalence
relation on X by = ~ y if and only if f(z) = f(y). The quotient X /= is homeomorphic to the
Hausdorff space Y. This implies the existence of a continuous surjective map Haus(X) — Y such

that f is the composition X — Haus(X) — Y. The factoring map is uniquely determined by f. O

Corollary 3.1.3. If x and y are two points of X such that @ N @ # 5, then x ~ y.

Proof. Since Haus(X) is Hausdorff, its points are closed. In particular, the conjugacy classes for
the relation ~ are closed subsets of X. If we assume that x » y, then the conjugacy classes of x and

y are disjoint closed subsets of X. This implies that the closures of {z} and {y} are disjoint. O

Definition 3.1.4 (Hausdorff character variety). The Hausdorff character variety of a finitely gener-
ated group I' and a Lie group G is the Hausdorffization of the topological quotient Hom(T", G)/Inn(G)
and is denoted

Rep”2(T, G) := Haus (Hom(F, G) /Inn(G)) .

The construction of character varieties by Hausdorff quotients has the advantage to work in a
broad sense (it could even be defined for topological groups G). It is the approach favoured in

[Mon16], for instance.

3.2 7 quotient

An alternative to the Hausdorff quotient is the T; quotient used in [RS90, §7]. Let G be a topological
group acting on a space X. For any x € X, we denote the G-orbit of x by O,. We make the following

crucial assumption:
Vre X, O, c X contains a unique closed G-orbit. (3.2.1)
Let X // G denote the set of closed orbits for the action of G on X and define
X ->X/QG

to be the map that sends z to the unique closed orbit contained in O,. A topology on X // G is
defined by declaring 7 to be a quotient map, i.e Z c X // G is closed if and only if 771(Z) ¢ X is

closed. Define a relation on X by



Lemma 3.2.1. Under the assumption (3.2.1), the relation ~ is an equivalence relation and X /| G

is homeomorphic to the quotient X /~.

Proof. The relation ~ is obviously symmetric and reflexive. We prove that it is also transitive.
Assume that z ~ y and y ~ 2. In particular, O, n O, is nonempty and thus contains an element
w. Since Oy N (’Ty is closed and G-invariant, it holds O,, < Oy N (’Ty We conclude that O, n (’Ty
contains a unique closed orbit which is the one contained in O,,. Similarly, Oiy n O, contains a
unique closed orbit. By uniqueness of the closed orbit contained in O,, the two must coincide.
Hence, O, N @ n O, contains O,, and is therefore nonempty. This shows that = ~ z.

To see that X // G = X/ ~, observe that, by the above argument, 7(z) = 7 (y) if and only if

x ~ y. Both are quotients of X and therefore homeomorphic. O

Lemma 3.2.2. The space X // G has the following universal property: For every T, space Y, any
continuous map X — Y that is constant on G-orbits factors uniquely through 7: X — X // G.

Proof. Let Y be 71 with a continuous map f: X — Y that is constant on G-orbits. Let x € X. We
want to prove that f is constant on O,. Let y = f(z). Since Y is 71, the singleton {y} < Y is closed
and so is f~!(y). Therefore, O, < f~'(y) and f is constant on O,. This shows that f: X —» Y
factors through X // G. The factoring map f: X //G — Y is continuous and uniquely determined
by f. O

In the case that X /G is a T; space, then Lemma 3.2.2 says that X //G is the largest 71 quotient
of X. There is a relation between X //G and the Hausdorffization of the topological quotient X /G.
Namely

Lemma 3.2.3. There is a natural surjective continuous map

X — X/G

lﬂ |

X /|G -- 1+ Haus(X/G)

Proof. Let x and y be two points of X. Lemma 3.2.1 says that if 7(z) = n(y), then O, n O, # &.
This means the closures of O, and Oy, seen as singletons in X /G, have a nonempty intersection.

By Corollary 3.1.3, we conclude that = and y project to the same point in Haus(X/G). O
Corollary 3.2.4. If X // G is Hausdorff, then it is homeomorphic to the Hausdorffization of X /G.

Definition 3.2.5 (7; character variety). If the conjugation action of G on the representation
variety Hom(T', G) satisfies property (3.2.1), we define the 7T; character variety of T’ and G to be

Rep” (I',G) := Hom(T', G) // Inn(G).

Note that the 7; character variety of I' and G might not be a 77 space, but always lies over any
Ti quotient of Hom(T', G) by Lemma 3.2.2. In particular, by Lemma 3.2.3, there is a surjection

Rep” (I',G) - Rep™* (L', G)
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which is a homeomorphism when Rep”* (I, G) is Hausdorff.

3.3 GIT quotient

In this section, we sketch a construction of character variety in the case that G is a complex
reductive algebraic group. It is based on geometric invariant theory (GIT). The reader may consult
[Sik12], [Dre04, §2] or [Loul5, §B.5] for more details.

If G is a complex algebraic group then the representation variety Hom(T', G) is an algebraic
variety by Lemma 1.2.3. Recall that the algebra of regular functions of Hom(I', G) is denoted
C[Hom(I",G)] and the subalgebra of G-invariant functions is denoted C[Hom(T',G)]¢. Nagata’s
theorem implies that C[Hom(I',G)]¢ is finitely generated, see Remark 2.3.2. In particular, there
is an algebraic variety denoted Spec(C[Hom(I',G)]%) whose algebra of polynomial functions is
C[Hom(T',G)]¢. This variety is also known as the GIT quotient of Hom(T',G).

Definition 3.3.1 (GIT character variety). The GIT character variety of a finitely generated group

I" and a complex reductive algebraic group G is defined to be
Rep® (', @) := Spec(C[Hom(T', G)]%).

The GIT character variety has by definition the structure of an algebraic variety and is, in par-
ticular, a Hausdorff topological space with the standard topology. The inclusion C[Hom(T', G)]¢ <

C[Hom(T', G)] induces a surjective morphism of algebraic varieties
p: Hom(T', G) — Spec(C[Hom(T, G)]%).

We recall here some general properties of GIT quotients and refer the reader to [Dre04, §2| and

[Loul5, §B.5], and references therein for proofs.

Lemma 3.3.2. The GIT quotient Spec(C[Hom(T', G)]%) has the following universal property: for
every algebraic variety Y, any morphism Hom(T',G) — Y that is constant on G-orbits factors
uniquely through p: Hom(T', G) — Spec(C[Hom(T',G)]%).

Lemma 3.3.3. The GIT quotient Spec(C[Hom(T', G)]|¥) satisfies the following properties:

1. For two representations ¢1, ¢y € Hom(T', G), it holds that
p(g1) =p(g2) & Oy, 0Oy, # &.

2. Any fibre of p contains a unique closed orbit (compare (3.2.1)).

Lemma 3.3.3, combined with Lemma 3.2.1, implies that the underlying topological structure
of the GIT character variety of I' and G coincides with the 7; character variety. Since the GIT
character variety is a Hausdorff space, it further coincides with the Hausdorff character variety by
Corollary 3.2.4:

Rep®'(I', @) = Rep "' (T, G) = Rep”? (I, G).
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3.4 Analytic quotient

If one is interested in constructing a character variety that is an analytic manifold, one can restrict
to good representations defined in Definition 2.2.11. If Hom®°%(I',G) is a nonempty analytic
manifold (recall from Corollary 2.2.13 that it is the case if I' = 7, o is a closed surface group and G

is a reductive algebraic group), then the quotient Hom#°°Y(T'", G)/Inn(G) is an analytic manifold.

Definition 3.4.1 (Analytic character variety). The analytic character variety of a closed surface

group I' = 7, ¢ and a reductive algebraic group G is defined to be
Rep”™ (7.0, G) := Hom®**(7, 0, G)/G.

The topology of an analytic character variety is a Hausdorff. Hence, by Lemma 3.1.2, there is

a projection from the Hausdorff character variety (which does not need to be a homeomorphism)

]-:{epT2 (7Tg,()7 G) - Repm (ﬂ—g,()v G)

3.5 Variant of the GIT and analytic quotients

The GIT character variety can be described more concretely as follows.

Definition 3.5.1 (Stability of representations). Let G be an algebraic group. A representation
¢o: ' - Gis

e polystable if O is closed.
e stable if ¢ is polystable and regular.

The Inn(G)-invariant subspace of polystable representations is denoted Hom® (I", G) and the sub-

space of stable representations is denoted Hom*(T', G).
These notions are redundant if G is a reductive complex algebraic group because of the following.

Proposition 3.5.2. Let G be a reductive complex algebraic group. Let ¢ € Hom(T', G) be a repre-

sentation. Then
1. ¢ is reductive if and only if ¢ is polystable,
2. ¢ is irreducible if and only if ¢ is stable.

The first assertion of Proposition 3.5.2 was already stated in Proposition 2.2.19. The second

assertion is a consequence of Lemma 2.2.18.

Theorem 3.5.3. Let G be a reductive complex algebraic group. The topological quotient
Hom™ (T, G)/Inn(G) = Hom™ (', @)/ Inn(G)

is homeomorphic to RepGIT(F, G). It contains, as an open subset, the topological quotient
Hom®(I', @)/ Inn(G) = Hom™ (', G)/ Inn(G)
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which is an orbifold whenever Z(G) is finite.

Proof. Polystable representations have a closed orbit under the Inn(G)-action by definition. So, the
first statement of Lemma 3.3.3 implies that the projection p: Hom(T, G) — Spec(C[Hom(T', G)]%)

factors through an injective map
Hom™ (T, G)/Inn(G) — Rep®'™ (T, G).

We can use the second statement of Lemma 3.3.3 to see that this map is also surjective.

Recall now from Proposition 2.2.9 that Hom™ (I', @) = Hom®(I', G) is open in Hom(T',G). To
prove the orbifold statement, we use that an algebraic variety over the real or the complex numbers
has a finite number of connected components in the usual topology, see e.g. [DK81, Thm. 4.1]. So,
if Z(G) is finite, then a polystable representation ¢: I' — G is stable if and only if Z(¢) is finite.
Equivalently, ¢ is stable if and only if it has a finite stabilizer for the Inn(G)-action. This shows that
the quotient is an orbifold since the Inn(G)-action on Hom®*(T', G) is proper by Theorem 2.2.10. [

Theorem 3.5.3 says that there is a natural structure of algebraic variety on the quotient of
the space of reductive representations by the Inn(G)-action, given that G is a reductive complex

algebraic group. In the case that G is a real algebraic group, we have the following

Theorem 3.5.4 ([RS90]). Let G be a real algebraic group. The quotient
Hom™ (T, G)/Inn(G)

is a real semialgebraic' variety.

Theorem 3.5.4 is proved in [RS90, Thm. 7.6].

1A semialgebraic variety is defined to be a set of points satisfying polynomial equalities and inequalities.
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Chapter 4

Symplectic structure of character

varieties

Throughout this section we assume that G is a quadrable Lie group. We also fix a nondegenerate,
symmetric, Ad-invariant bilinear form B: g x g — R. Goldman described in [Gol84] a natural
symplectic structure on the character variety of representations of a closed surface group into a
quadrable group. We remind the reader of the construction.

Assume for now that I' is any finitely generated group. We explained in Corollary 1.4.5 that the
Zariski tangent space to Hom(I', G) at a representation ¢ can be identified with Z1(T',gs) < g'.
To define a 2-form on the representation variety Hom(I', G) we use the cup product in group

cohomology (B.11). Combined with the pairing B, this gives a map
1 1 —. 72 Bx 2
w: Z'(T,g4) x Z(T,94) — Z2(T, 94 @ 9s) — Z°(T, R). (4.0.1)

The map w is bilinear and anti-symmetric because the cup product is anti-symmetric in degree 1

(Lemma B.11) and B is symmetric.

Theorem 4.0.1 ([Kar92)]). Let p: Z?(I',R) — R be any continuous linear function that vanishes
on B%(T',R). Then, pow is a closed 2-form on Hom(T, Q).

The main conclusion of Theorem 4.0.1 is the statement that the form ¢ ow is closed. Karshon
gives an elementary proof of the closeness via direct computations in group cohomology.

The cup product of coboundaries in B(T, g,) is itself a coboundary inside B*(T, g, ® g4). This
shows that the 2-form ¢ ow is degenerate. Recall from Proposition 1.4.6 that the tangent space at
¢ to the G-orbit O4 ¢ Hom(I',G) can be identified with the 1-coboundaries B(T, g,) < g'. So,
@ ow is degenerate at least along the tangent directions to the G-orbit of ¢. In general, the kernel

of ¢ o w might contain more degenerate directions than those which arise from O.

Definition 4.0.2 (Goldman symplectic form). In the case that the G-orbits are the only directions

of degeneracy of ¢ ow, we denote by wg the induced nondegenrate closed form on cohomology:

(wg)g: H'(T,g4) x H'(T',gg) — R.
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We say that wg is the the Goldman symplectic form on Hom(T', G)/Inn(G).

The index G refers to Goldman. We are abusing the terminology “symplectic form” here.
The topological quotient Hom(I', G)/Inn(G) does not need to be a variety in general and it is
abusive to say that the “Zariski tangent space” at [¢] € Hom(T", G)/Inn(G) is the quotient space
HY(T,g4) = Z'(T, 94)/B* (T, gs). What wg really is, is a 2-form on Hom(T', G) that is degenerate
precisely along the orbits of the Inn(G)-action.

4.1 Closed surface groups

Let I' = 740 be a closed surface group. Let [my ] be a generator of Hy(my0,Z) = Z (where 7Z is
the trivial w4 o-module). In other words, [mg ] corresponds to an orientation of the surface ¥,
under the isomorphism Hy(mg0,Z) = Ha(X4,0,Z) of Theorem B.8. Integration against [my o] gives
an isomorphism

[mg0] ~: H*(my0,R) = R.

Let ¢: Z%(my.0,R) — R be given by the composition of the quotient map Z2(ry,0,R) — H?(my0,R)
and the integration against [, o]. Clearly, ¢ vanishes on B?(m, o, R).

Lemma 4.1.1. Let T’ = m, be a closed surface group. The composition of ¢: Z*(m40,R) = R
with the form w of (4.0.1) defines a 2-form on Hom(my 0, G) whose kernel is B (my0,R).

Proof. The proof relies on Poincaré duality in group cohomology for the group 74 0. It implies that
the cup product
HI(TF%(),R) X Hl(ﬂg70,R) = H2(7T9707R)

is a nondegenerate pairing. This means that the form ¢ o w is degenerate on B!(my o, R) only. [

The induced nondegenerate closed form (wg)y: H' (74,0, 86) x H (740, 84) — R is the celebrated
Goldman symplectic form for character varieties of closed surface groups representations. The
original argument of Goldman in [Gol84] to prove that the wg is closed is inspired by the treatment
of the case when G is compact in [AB83]. The proof involves an infinite dimensional symplectic
reduction from the affine space of connections on some vector bundle, see [Gol84] and [Lab13, §6]

for more details.

Remark 4.1.2. The Goldman symplectic form depends on the pairing B on the Lie algebra of G.
Different choices of pairing for the same Lie group G may lead to different symplectic structures.
Abusing once again of the term “symplectic manifold”, one can say that Goldman’s construction
is a functor form the product category of the category of closed connected oriented surfaces ¥, o
with the category of quadrable Lie groups G with a choice of a form pairing B to the category of

“symplectic manifold”
(Egyo, (G, B)) s (Hom(m(Eg,o), G)/Inn(G),wg).

We point out that the quotients Hom(m (X4 0), G)/Inn(G) obtained for different choices of base-
points in X, ¢ are naturally isomorphic (the isomorphism does not depend on the choice of path

connecting different basepoints).
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4.2 General surface groups

Let I' = 7y, be a surface group. We will assume in this section that n > 0. As mentioned
earlier, in that case 7, is a free group and the representation variety Hom(mg ., G) is isomorphic
to the product G29t"~1. It can be written as the disjoint union of so-called relative representation

varieties.

Definition 4.2.1 (Relative representation variety). Let C = (C,...,Cy) be an ordered collection
of n conjugacy classes in G. The relative representation variety associated to (mg n,G,C) is the

subspace of Hom(r, ,,, G) given by
Home(7g,n, G) := {¢ € Hom(myn,G) : ¢(c;) € C;, Vi=1,...,n},

where ci,. .., c, refer to the generators of 7, , in the presentation (1.1.3).

If G/G denotes the set of conjugacy classes in G, then

Hom(mg p, G) = |_| Home (mg,n, G).
Ce(G/G)n

Relative character varieties are really associated to the particular presentation of 7, , that we fixed

in (1.1.3). The conjugation action of G on Hom(m, ., G) restricts to Home(7y p, G).

Lemma 4.2.2. Let G be a Lie group equipped with an analytic atlas. The relative representation
variety Home (7g.n, G) is naturally an analytic subvariety of G*9%". If G is a complex algebraic
group, then Home(my pn, G) is an algebraic subvariety of Hom(my ., G). If G is a real algebraic

group, then Home(my n, G) is a semialgebraic subvariety of Hom(mg ., G).

Proof. The proof is analogous to the proof of Lemma 1.2.2. A conjugacy class C' € G/G is a smooth
submanifold of G isomorphic to G/Z(c), where c is any element of C' (recall that Z(c) is a closed
subgroup of G). It has a unique structure of real analytic manifold that makes the projection
map G — G/Z(c) an analytic submersion. The relative representation variety Home (7, G) is
naturally identified with the subspace of G?9 x C} x ... x C,, cut out by the single relation of the
surface group 7, ,, (see (1.1.3)). This shows that Home (7 ,,, G) is an analytic subvariety of G297,
Observe now that, if G is a complex algebraic group, then conjugacy classes in G are algebraic
subvarieties of G. This can be seen as a consequence of Chevalley’s Theorem. Moreover, if G is
a real algebraic group, then conjugacy classes in G are semialgebraic subvarieties of G'. This, in

turn, is a consequence of Tarski—-Seidenberg Theorem. O

We would like to determine the Zariski tangent space to relative character varieties. We follow
the approach of [GHIJWO97, §4]. Let ¢ € Home (g1, G). The Zariski tangent space to Home (7 1, G)
at ¢ is the space of all tangent vectors in Z* (g.n, 8¢) tangent to a smooth deformation ¢; of ¢ inside
Hom(m, », G) that satisfies ¢;(c;) € C; up to first order. Observe that the condition ¢:(c;) € C; is

equivalent to the existence of a smooth 1-parameter family g;(¢) € G, with g;(0) = 1, and

—1
Pe(ci) = gi(t)p(ci)gi(t) ™. (4.2.1)
1 An example of conjugacy classes that are a semialgebraic subvarieties, but not algebraic subvarieties, are parabolic
conjugacy classes inside SL(2, R).

36



Lemma 4.2.3. A vector v e Z'(my,8,) tangent to ¢ at t = 0 satisfies (4.2.1) up to first order if
and only if

v(e;) = gi — Ad(¢(ci)) di,
where §; € g is the tangent vector to g;(t) at t = 0.
Proof. We use %|t=0 di(ci)p(c;) 1 = v(e;) and derive the relation (4.2.1). O

Corollary 4.2.4 ([GHIW97]). The Zariski tangent space to Home (', G) at ¢ is

T(Z) HOYDC(RG) = {’U € Zl(ﬂ-g,nagqﬁ) :Vi= 17 L 3& €9, U(C’i) = gl - Ad(¢(cl))§z} .

The cocycles v € Z! (7g.n, o) that satisfy the property stated in the conclusion of Corollary 4.2.4

are called parabolic 1-cocycles, see Appendix B.8. The subspace of parabolic cocycles is denoted

Zp}ar(ﬂ—g,na g¢) = Zl(ﬁg,na gd?)

The tangent space to the G-orbit Oy of ¢ € Home(I', G) still identifies with B'(7,.,94). The
quotient of parabolic 1-cocycles by 1-coboundaries is the first parabolic group cohomology group

of 7y, with coeflicients in the 7y ,-module gg:

H;ar (Trg,n, g¢) = Z;ar (ﬂ-g,nv g¢)/Bl (ﬂ-g,nv g¢)

Proposition 4.2.5. Let G be a quadrable Lie group. The dimension of the Zariski tangent space

to Home(my n, G) at ¢ is

(29— 1)dim G + )] dim C; + dim Z(g).

i=1

In particular, the smooth points of Home(mg ., G) are the representations ¢ such that
dim Z(G) = dim Z(¢).

Proof. We proceed as in the alternative proof of Proposition 1.5.3. Let A; = ¢(a;), B; = ¢(b;)

and R; = ¢(c;), where a;,b;,c; refer to the presentation (1.1.3). Consider the map pu: g29™"

-9

obtained by differentiating the unique surface group relation:

<H Ad ( ) (o — Ad(4; B; A7 )

j<i

:u’(ala"'70597617"'769771)"'7711 =

<H Ad ( ) (B — Ad(B;A;B; 1))

n

i—1
([Ax, Bi] Z <H Ad (Rj)> (vi — Ad(R;)i)-
k=1 i=1 \j=1

Let V be the orthogonal complement of the image of u with respect to the pairing B. Similarly
as in the alternative proof of Proposition 1.5.3, we conclude that V' = 3(¢). The Rank-Nullity
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Theorem gives

n

dim Ty Home (T, G) = dim Ker(u) = (29 — 1) dim G + ) dim C; + dim Z(¢). O

i=1

Remark 4.2.6. We make a little digression on the dimension of conjugacy orbits inside Lie groups.
Recall that any conjugacy class C € G/G is a smooth submanifold of G diffeomorphic to the quotient
G/Z(g). If G is quadrable, the pairing B on g can be used to identify coadjoint orbits in g* to
adjoint orbits in g. Coadjoint orbits are naturally symplectic, see e.g. [CdS01, Homework 17]. The
exponential map maps the adjoint orbit of £ € g to the conjugacy orbit of exp(§) in G. Recall
however that the Lie theoretic exponential map needs not be a local diffeomorphism at £. If it
were, it would imply that the conjugacy orbit of exp(€) in G has even dimension. M. Riestenberg
pointed out to the author a class of examples of Lie groups that contain conjugacy classes of odd
dimension. They consist of the group of all isometries of an odd-dimensional symmetric space X.
In that case, the conjugacy class of the orientation-reversing isometry s, that reflects through a

point p is the set of all the orientation-reversing isometries s, for ¢ € X and is therefore isomorphic
to X.

Question 4.2.7. When does a conjugacy orbit in a quadrable Lie group G have even dimension?

Is it necessarily the case if it lies in the image of the exponential map?

We close the digression and go back to relative representation varieties. We would like to obtain
an analogue of the Goldman symplectic form for general surface groups. We denote by 0;mg p
the subgroup of 7, generated by ¢;. We write dmy , for the collection of subgroups {0;mg n}.
Observe that the cup product in group cohomology restricts to the product (B.15) in parabolic

group cohomology. It gives an anti-symmetric bilinear form
1 1 —. 72 Bx 2
w: Zpar(ﬂ-f/,nag¢) X Zpar(ﬂ-gﬂﬂgqﬁ) — 7 (7Tg7’ﬂ7aﬂ-9an’g¢®g¢) —Z (ﬂ-gﬂ“aﬂ-g»”’R)'

Let [mg.,] be a generator of Ha(mg,0mg n,Z) = Z, that corresponds to a choice of orienta-
tion for the surface ¥, ,. Integrating against the fundamental class [mg ] gives an isomorphism
H?(7g.n, 07y n, R) = R. Let ¢: Z%(Tgpn,0Tgn,R) — R be the composition of the quotient
map Z2(mgn, 07y n, R) — H*(Tgn, 0Ty n, R) with the integration against [, ,]. Similarly as in
the closed case, it was proven in [GHIJWO97, §3] that the 2-form ¢ o w is degenerate precisely on
B(7g.n,84) and is furthermore closed [GHJW97, Thm. 7.1] (see also [Law09]). We obtain

Theorem 4.2.8 ([GHIWOI7]). LetT' = 7, ,, be a surface group. The composition of
w: Z;ar(ﬂ-gﬂ?g(b) x Z;ar(ﬂ-g,nag(ﬁ) - Z2(7T!J7n7 aﬂ-.‘]»”’R)

with ¢: Z2(7Tg’n, 0mgn,R) = R gives a nondegenerate closed 2-form

(wg)¢l H;ar(ﬂ-g’n79¢) X H;ar(ﬁg,nagd)) - R
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Definition 4.2.9 (Relative character varieties). The Hausdorflization of the topological quotient
Home(7g,n, G)/Inn(G)

is called the relative character variety associated to (mgn,G,C). The nondegenerate closed 2-form

wg is the the Goldman symplectic form on Home(mg 4, G)/Inn(G).

Depending on the properties of the group G, the definition of relative character variety can be

refined in order to get a better control of its structure similarly as in Section 3.

Remark 4.2.10 (Poisson structure). The representation variety Hom(g,,, G) is the disjoint union of
all the relative representation varieties Home (7, G) over all possible choices for C € (G/G)™. The
quotient of each relative representation variety by the Inn(G)-action has a symplectic structure in
the sense of Theorem 4.2.8. It turns out that these quotients are the symplectic leaves of a Poisson
structure on the quotient of the representation variety by the Inn(G)-action. The reader is referred

to [BJ21] for a precise statement, a proof, and references to prior proofs.

Definition 4.2.11 (Goldman symplectic measure). Both in the case of character varieties for closed
surfaces and in the case of relative character varieties for punctured surfaces, the measure obtained

from the Goldman symplectic form is denoted vg and called the Goldman symplectic measure.
The Goldman symplectic measure is a strictly positive Borel measure. It means that open sets
are measurable and always have positive measure if they are nonempty.

4.2.1 Case of a punctured sphere

In the case that I' = m ,, is the fundamental group of a punctured sphere, then one can obtain fairly
explicit formulae for the Goldman symplectic form on Home(mg n, G). We abbreviate m, := mg
in this section. We first need to compute a fundamental class [, ] explicitly. All computations are

lead in the bar complex for group cohomology introduced in Appendix B.2.

Lemma 4.2.12. Let e € Z[m, x m,] be given by
e:=(ci1,c2) + (crea,c3) + ...+ (c1c2 .o Cpe1,0) + (1, 1), (4.2.2)

Then (e,c1, ..., ¢n) € Z%(Tp, 0Tn, Z), i.e. the 2-chain (e, cy, . .., cy) is closed. Moreover, [(e,c1,...,cn)]

is a generator of Ha(my,, 0m,, Z).
Proof. Let 1;: d;m, — m, denote the inclusion of the subgroup 0;m, (generated by ¢;) into m,. The
long exact sequence (B.9) in group homology for the pair (m,, 0r,) contains

.= Hy(mn, Z) —> Ha(mp, 0mp, Z) —>> Hy (870, Z) 5 Hy (70, Z) — ...

Since Hy(m,,Z) = 0, the connecting morphism § is an isomorphism onto its image. Hence
Hy(mp, 0mn, Z) = Ker(@r;). Recall that Ho(m,, 0my,Z) = Z, and so Ker(@®;) = Z. The strat-
egy to find a fundamental class is to first find an isomorphism ¢ : Ker(@z;) — Z, then compute

Y ~1(1) € Hy(0m,,Z) and finally compute its preimage under §.
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Recall that the bar chain complex that computes the homology of the group ,, with coefficients
in the trivial 7,-module Z is defined by Cy (7, Z) = Z®z Z[rk] = Z[r¥], where 7F = 7, x ... x .

n

The differentials in degrees 1 and 2 are

Co(mnZ) —2— Ci(mn, Z) —2— Co(mn,Z)
g _ O

(g,h) ——— g+ h —gh.

In particular, the first homology group is

Hy(7p,Z) = Z|7n]/(g + h — gh), (4.2.3)

1

Since ¢,, = ]_[?:_11 c; ! by construction, it holds that ¢, = 37~,' —¢; and ¢¥ = k- ¢; inside Z[r,]/(g +

h—gh). This gives an isomorphism Z[r,]/(g+h—gh) = Z-c1®...@Z¢,_1. For the same reason,
Hl(aﬂrn,Z) = Z[amn]/(g +h— gh) =7-c.

We are interested in the morphism ¢: Z"™ — Z"~! induced by @; in the following diagram

Hy(0mn, Z) i>Z'01(-D...(-BZ-cn = J7n

- J

H\(mp,2) —=57Z-c1®..®L cp_y —— Z" "

The previous identifications implies that ¢ is the morphism
o(ma,...,my) = (M1 — My, ...,Mp_1 —My).

Therefore, the kernel of ¢ consists of vectors having identical entries and thus Ker(@;) is generated
by [(c1,...,cn)] € Hi(0mn, Z).

It remains to compute d~'([(c1,...,¢,)]). Since d is induced from the projection Z[72] ®
Z[om,] — Z[0m,], it is enough to find a chain e € Z[r2] such that (e,cy,...,c,) is closed. This is

the case for e given by (4.2.2) because doe = —c; — ... — ¢, and hence (e, cq,...,¢,) = 0. O

The fundamental class [, ] was already computed in [GHIJW97, Section 2] using different meth-
ods. We now give explicit formulae for the Goldman symplectic form.

Let u,v € Z}, (mn, gs). By definition of parabolic cocycles, there exist &;, (; € g such that

par
u(e) = & — Ad(p(e:))&i,  v(e) = G — Ad(d(e)) G, i=1,...,n.
The first step consists in computing a preimage of u inside Z* (7, 0m,, ). Note that
0&i(c;) = Ad(d(ci))& — & = —ulci).

Hence, the 1-cochain (u, —&1, ..., —&,) is closed and is a preimage of u.

To compute wg(u,v), we proceed as follows:
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1. Apply the cup product to (u, —&1,...,—&,) and v.
2. Apply the pairing B-

3. Take the cap product with the fundamental form [r,] computed in Lemma 4.2.12 (here we

use Lemma B.15).

This gives
we(u,v) = By (u— v)(e) + Y. Ba(& — v)(ci). (4.2.4)
=1

We develop each cup product according to (B.11) and plug in the value of e computed in Lemma
4.2.12. The right-hand side of (4.2.4) becomes

n n

DIB(uer ... cima) - Ad((er - ... - cima))v(e)) + Y B(&i - v(ci). (4.2.5)

i=2 =1

We can further simplify (4.2.5) using to the Ad-invariance of B and the formula u(z~!) = — Ad(é¢(z1))u(z).
It is useful to introduce the notation b;_s := ¢; ', -+ ¢y '. In particular, by = ¢;* and b,_; = 1. We

obtain
n n

wg (u,v) = — Z B(u(bi—2) - v(ci)) + Z B(& - v(ci)). (4.2.6)

i=2 i=1
Using that wg and the cup product are anti-symmetric, we get the following equivalent form of
(4.2.6)

n

wg(u,v) = — Z B(u(b;_2) - v(c;)) — Z B(¢; - u(ey)). (4.2.7)

i=2
Formulae (4.2.4), (4.2.7), and (4.2.6), were already obtained in the proof of [GHIW97, Key
Lemma 8.4]. We go one step further.

Lemma 4.2.13. It holds that
n—2
wg(u,v) = Z B((Ci+1 = Giv2) - u(bi)). (4.2.8)
i=1
Proof. Using v(c¢;) = ¢; — Ad(¢(c;))¢; and the Ad-invariance of B, we get
B(u(bi—2) - v(ci)) = B(Gi - u(bi—2)) — B(Ad(¢(0¢_1))u(bi72) - Gi)
By construction, b;_; = ¢; 'b;_s and thus u(b;—1) = u(c; ') + Ad(p(c;))u(bi—z). So,

Blu(bi—z) - v(es)) = B(G: - ulbi—2)) — B(G - ulbi—1)) + B(G - u(e; V).
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Therefore, (4.2.7) becomes

~ BG - u(en) — 3 B(G- (u(e; ) + u(e)
_B(Gu(b)) + 3 B - ulbir) — BG - u(bis))
=3

= 3 B((Ger — Gova) (b)) — 3. B(G- (ule) + ),
R ’

where in the second equality we used by = c¢;* and in the third equality that u(b, 1) = u(1) = 0.
It remains to prove that Q = 0. Using u(z ') = — Ad(¢(z1))u(x), we get

B(Gi - ule; ") = =B(Ad(¢(c))Gi - u(cy)).

Therefore, using v(¢;) = ¢ — Ad(é(¢;))E;, we conclude

n

0= Z B(u(e;) - v(c;))-
i=1
By construction, B(u(:) - v(+)) defines a 1-cocycle in Z!(m,,R). Closeness can also be computed
directly using (B.2), similarly as in the proof of Lemma B.11. Therefore, 2 is equal to the evaluation
of the 1-cocycle B(u(-) - v(+)) on the 1-cycle ¢1 + ...+ ¢,. The identification (4.2.3) shows that the

l-cycle }I" | ¢; vanishes in homology (this is a consequence of the fact that [ [, ¢; = 1). Hence,
Q = B(u(1l) -v(1)) = 0 as desired. O
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Chapter 5

Volume of a representation

The topology of a representation variety is notably known to be complicated. The enumeration of
its connected components is a non-trivial task. The volume of a representation is an invariant that
lets us approach this problem. We recall its definition below and recommend [BIW10] for more
details.

5.1 Definition

The volume is defined in [BIW10] for representations of surface groups I' = 7y ,, into Hermitian Lie
groups G. Recall that a Hermitian Lie group G is a semisimple Lie group, with finite center and no
compact factors, such that its associated symmetric space X is a Hermitian manifold. The Kéahler
form obtained from the unique G-invariant Hermitian metric of constant sectional curvature —1 on

X is denoted wy. The classical examples of Hermitian Lie groups include SU(p, ¢) and Sp(2n,R).

Example 5.1.1. The guiding example in this section is the group G = SL(2,R) =~ SU(1,1).
It is a simple Lie group, without compact factor and with center Z(SL(2,R)) = {+I}. It is of
Hermitian type. It is sometimes more convenient to consider the center-free quotient PSL(2,R) :=
SL(2,R)/{£I} instead, which is also of Hermitian type. The associated symmetric space is the
upper half-plane X = H on which SL(2,R) acts by Mobius transformations, see Appendix A for
more considerations on the groups SL(2,R) and PSL(2,R). The group of orientation-preserving
isometries of H is PSL(2,R). The associated Kihler form is wy = (dz A dy)/y>.

Let G be a Hermitian Lie group with symmetric space X. Given three points z1, z2, 23 in X, we
denote by A(z1, 22, z3) the oriented geodesic triangle in X with vertices z1, 22, z3. Its signed area,

computed with the area form associated to wy, is denoted by

[A(zl>z2a23)] = J wx.

A(z1,22,23)
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Fix a basepoint z € X and consider the function

c:GxGE->R (5.1.1)
(g1792) - [A(zaglzaQIQQZ)]-

Lemma 5.1.2. The function ¢ satisfies the cocycle condition

(g2, 93) — (9192, 93) + c(g1,9293) — c(91,92) =0 (5.1.2)

for every g1, g2, g3 € G, compare (B.2).

Proof. We need the following identity: if z1, 29, z3 are any three points in X, then, for any fourth
point w € X,

[A(z1, 22, 23)] = [A(21, 22, w)] + [A(22, 23, w)] + [A(zs, 21, w)]. (5.1.3)

The following picture should convince the reader of (5.1.3).

w
29 22
Z1 Z1
z3 Z3

In terms of triangle areas, the cocycle condition (5.1.2) is equivalent to

[A(2, 927, 92932)] + [A(z, 912, 9192937)]

being equal to
[A(2, 91922, 9192932)] + [A(2, 912, 91922)]-

Since g; € G acts by isometry on X and preserves the orientation, the latter is equivalent to

[A(912, 91922, 9192932)] + [A(z, 912, 9192932)]
being equal to
[A(2, 91927, 9192952)] + [A(2, 912, 91922)].
This is precisely formula (5.1.3) applied to 21 = z, 20 = g12, 23 = g1g22 and w = g1g2932. O

Lemma 5.1.2 implies that ¢ defines a cohomology class & := [c] inside H?(G,R). The function ¢
is bounded because the area of a geodesic triangle in X is bounded. This means that the cohomology
class k gives a class k € Hg(G, R) in the second bounded cohomology group of G. We recommend

[L6h10] for an introduction to bounded group cohomology.

Lemma 5.1.3. The cohomology class k is independent of the choice of the basepoint z involved in

the definition of ¢ (whereas ¢ does depend on the point z).
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Proof. For the purpose of this proof, we will write ¢, instead of ¢ for the cocycle (5.1.1) to emphasize
the dependence on the basepoint z. Given another basepoint x € X, we prove that ¢, — ¢, is a
coboundary.

First, we develop ¢, (g1, 92) = [A(z, 912, g1922)] using (5.1.3) with w = g;x. We obtain

[A(z, 912, 912)] + [A(912, 91922, g17)] + [A(g1922, 2, 91.7)]
_[A(Iv ngl_lz)] + [A(‘Ta 27922)] + [A(gngZ’ 279158)]'

(g1, 92)

Now, we develop [A(g1922, 2, g12)] using (5.1.3) with w = x. This gives

[A(g1922, 2, 2)] + [A(z, 1z, )] + [A(917, 91927, T)]
—[A(l‘, Z’gngZ)] - [A(va’glz)] + [A(glxvgngZa ‘T)]

[A(9192Z7 2, glm)]

Finally, we develop [A(g12, g1922, )] using (5.1.3) with w = g;gox. We have

[A(g17, 91922, 2)] = [A(917, 91922, 91927)] + [A(91922, T, g1922)] + [A(z, 917, 91927) ]
= [A(z, 2,95 "2)] — [A(z, 2,95 97" 2)] + ca(g1, 92)-

Consider the 1-cochain v, ,(g) := [A(z, 2, g2)]. It holds that

vz 2(01,92) = [A(x, 2, 12)] + [A(z, 2, g22)] — [A(x, 2, g1922)].

In particular, dv, .(g,971) = [A(z, 2, 92)] + [A(x, 2, g7 '2)]. The previous computations show that

62(91792) - Cx(gth) = avm,z(gla.QQ) - avm,z(glagl_l) + 0Uz,z(92_1791_1) - 0vz,z(glagl_1)'

We conclude as predicted that ¢, — ¢, is a coboundary. O

Given a representation ¢: m,, — G, we can pull back  to the class ¢*r inside HZ(my n, R).

An important property of the bounded cohomology of the group 7, ,, is that the map
j: HE (T, 0Ty n, R) = HE(7yn,R) (5.1.4)

from the long exact sequence in cohomology for the pair (ﬂgvn, 67rg7n) is an isomorphism, see [L6h10,
Thm. 2.6.14]. Recall finally that integrating along a fundamental class [ ] gives an isomorphism
H?(7g.n, 07y 0, R) = R.

Definition 5.1.4 (Volume of a representation, [BIW10]). Let G be a Hermitian Lie group. The
volume of a representation’ ¢: 7, , — G is the real number defined by

vol(¢) := jH(¢* k) ~ [mg,n]-

The volume is a generalization of the Euler number of a representation of a closed surface group

1Up to a constant, the volume of a representation ¢ is sometimes called the Toledo number of the representation
and is, in that case, denoted Tol(¢). The two notions are related by the identity vol(¢) = 27 Tol(¢).
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into PSL(2,R). The latter is equal to the Euler number of the flat RP*-bundle (£, x RP!)/xy o —

Y40 associated to a representation w4 o — PSL(2,R).

5.2 Properties

Lemma 5.2.1. The volume is invariant under the conjugation action of G on Hom(my », G) and

thus descends to a function

vol: Hom(mg ,,G)/Inn(G) — R.

Proof. Consider the cocycle ¢ defined in (5.1.1). The diagonal conjugation action of an element
g € G on G x G amounts to a change of basepoint in the definition of c¢. Indeed, if ¢, denotes
the cocycle (5.1.1) defined using the basepoint z € X, then it holds that c.(gg197!, ggo97") =
Cg-1:(91,92). Since, by Lemma 5.1.3, the cohomology class « is independent of the choice of the

basepoint defining ¢, we conclude that the volume is an invariant of conjugation. O

The main properties of the volume are the following. We denote by x(X, ) the Euler charac-

teristic of X ,,.

Theorem 5.2.2 ([BIW10]). The volume, seen as a function vol: Hom(m, ,,G) — R, has the

following properties:
1. vol is a continuous function.
2. vol s locally constant on each relative representation variety.

3. (Milnor-Wood inequality) vol is bounded:
[vol | < 2 - [x(Eg.0)| - rank(G),
moreover, if n > 0, then vol is a surjective function onto the interval

[=27 - [x(3g,n)] - rank(G), 27 - [x(Xg,n)] - rank(G)]

4. vol is additive: if X, is separated by a simple closed curve into two surfaces S1 and Sa, then,

for every ¢ € Hom(mg , G),
vol(¢) = vol(¢ 1+, (s,)) + vol(dl 1, (s,))-

The first and second statement in Theorem 5.2.2 imply that the set of representations of a given
volume forms a collection of connected components of each relative character variety. Recall that
in the case of a closed surface group and G = PSL(2, R), the Euler number completely distinguishes
the connected components of the character variety [Gol88].

The volume has an interesting symmetry that comes from reversing the orientation of X. By
definition, for each z € X, there exists an orientation-reversing isometry s, of X that fixes z. This
gives an involutive automorphism o: G — G defined by o(g) := s, 0 g o s,. Indeed, if g € G is an

orientation-preserving isometry of X, then s, o go s, is again an orientation-preserving isometry of
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X, and hence belongs to G. Using the functoriality of representation varieties (see Lemma 1.2.7),

the involution ¢ descends to an analytic involution
o: Hom(ny ,, G) = Hom(mgy p, G).
Lemma 5.2.3. The involution o satisfies the following properties:

1. o preserves conjugacy classes of representations, and therefore descends to an involution

o: Hom(my p,G)/Inn(G) — Hom(mg ,,, G)/Inn(G).
2. o depends on the choice of z € X only up to conjugation, in particular, & is independent of
the choice of z € X.

3. For any representation ¢ € Hom(mgy ,, G) it holds that

vol(o(¢)) = —vol(¢).

1

Proof. The first assertion follows from o(gpg 1) = (s.0g0s.)o(¢)(s.0g 'os.) and the observation

that s, o g o s, is orientation-preserving. If z’ € X is a second point, then it holds that s, o

g oSy = (8, 08,)(s,0908,)(s, 0 8,), which proves the second assertion because s, o s, is
orientation-preserving. Finally, note that (o(¢))*k = ¢*(0*k) and 0*k = —k because s, reverses
the orientation of X. O

Example 5.2.4. Consider the case G = SL(2,R). An example of orientation-reversing isometry

of the upper half-plane is given by z — —Z. It fixes the imaginary axis. The associated involutive

automorphism o of SL(2,R) is given by conjugation by the matrix ((1) 0 ) of determinant —1.
The involution ¢: Hom(w, ,,G) — Hom(m,,,G) maps the relative representation variety
Home(7g,n, G) to the relative representation variety Homgc)(7gn,G). Since G is of Hermitian
type, it is by definition semisimple and hence quadrable. The Goldman symplectic form built from
the Killing form on g is invariant under o. This is a consequence of the fact that the Killing
form is invariant under automorphisms of g. In this case, the involution o: G — G induces an

automorphism Do: g — g.

5.3 Alternative definition

A downside of Definition 5.1.4 is the lack of computability. Given a representation ¢: m,, — G,
. This

is a non-trivial task in general. There is an alternative definition of the volume of a representation

computing j~!(¢* k) means finding a primitive in H'(0;7,.,, R) for each restriction ¢*x Poimym
that makes it easier to compute. It is based on a notion of rotation number that generalizes the
classical notion of rotation number for homeomorphisms of the circle, see [Ghy01] for an exposition
of the classical theory of rotation numbers. The rotation number in our context is a function

p: G - R/277 that lifts to a quasimorphism p: G — R of the universal cover of G. We explain the
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construction in the case G = PSL(2,R) and refer the reader to [BIW10, §7] for the general case.

The main result is

Theorem 5.3.1 ([BIW10]). Let ¢: Tgn — G be a group homomorphism that covers ¢. Then

vl(¢) = = 7 (3e.)) .

i=1
where ¢; are the generators of mg.,, of presentation (1.1.3).

Example 5.3.2. Let’s study the case G = PSL(2,R). We fix a topological group structure on
PSL(2,R) by fixing a unit e in the fibre over the identity. The action of PSL(2,R) on the circle
R/27Z (see Lemma A.4) gives a group homomorphism f: PSL(2,R) — Homeo™ (R/27Z). This

—~—

action lifts to a faithful action of PSL(2,R) on the universal cover R/27Z. The classical rotation
number is a function rot: Homeot (R/27Z) — R, see [Ghy01]. The quasimorphism p: PSE(\2T]R) —
R is the unique lift of p := rot of satisfying p(e) = 0.

We can describe p more explicitly by considering conjugacy classes in PSL(2,R). Recall that, if £
denotes the set of elliptic conjugacy classes in PSL(2,R), then there is a well-defined angle function
9¥: & — (0,27), see Lemma A.7. It extends to an upper semi-continuous function 9: PSL(2,R) —
[0, 27] by

9(A), if A is elliptic,
I(A) =<1 0, if A is hyperbolic or positively parabolic, (5.3.1)
27, if A is the identity or negatively parabolic.

The notions of positively and negatively parabolic refer to the two conjugacy classes of parabolic
elements in PSL(2,R) represented by (A.6). The definition of the function ¥ is ad hoc, however it

satisfies ¥ = p modulo 27. In particular, the correction term

Ho) = o (2 Hole)) = 2,7 (5«:»)) (5:3.2)

is an integer called the relative Euler class of ¢. The definition of the relative Euler class very much

depends on the choice of the extension ¥ of ¥. Theorem 5.3.1 implies

The range of the relative Euler class over Hom(my ,,, G) was studied in [DT19]. The authors proved
that

Proposition 5.3.3 ([DT19]). Let ¢: myn — PSL(2,R) be a representation. Then

() < max {|x<zg,n)|, =) ﬁ(qb(ci))} .

n

Remark 5.3.4. Observe that, as soon as g > 1, then [x(34,) = n = &> J(¢(c;)) and
thus the inequality k(¢) < |x(X4n)| prevails. In the case g = 0, it is however possible that
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Chapter 6
Mapping class group dynamics

We expand on some results and remarks from Section 1.3. Let G be a Lie group and I' be a finitely
generated group. Recall that the Aut(T')-action on the representation variety Hom(I', G) descends
to an action of the outer automorphisms group Out(I') on the quotient Hom(T', G)/Inn(G). This
action preserves the analytic/algebraic structure of Hom(I', G) by Lemma 1.3.1. When I' = 7, , is
a surface group, then Out(m, ;) contains the mapping class group of the surface ¥, ,, as a subgroup,
compare Example 1.3.2. The induced action is the so-called mapping class group action on character
varieties.

We start with some general considerations on the Aut(T')-action on Hom(T', G) and then spe-

cialize to the case of a surface group.

6.1 Remarks on the Aut(I')-action

Lemma 6.1.1. The Aut(T')-action on Hom(T", G) preserves the subspaces of (very) regular, reduc-

tive, irreducible, good and (almost) Zariski dense representations.

Proof. All these particular notions of representations are defined in terms of the image of the
representation. However, for any 7 € Aut(T") and ¢ € Hom(T", G), it holds that ¢(T") = (¢o7)(I"). O

A consequence of Lemma 6.1.1 is that the Out(I')-action on Hom(I', G)/Inn(G) restricts to an
action of Out(I") on the GIT character variety RepGIT(I‘, G) (by Theorem 3.5.3, assuming G is a

reductive complex algebraic group) and on the analytic character variety Rep™(my 0, G).
Lemma 6.1.2. The Aut(I")-action on Hom(T', G) preserves closed orbits.
Proof. This is an immediate consequence of Lemma 1.3.1. O

In particular, Lemma 6.1.2 implies that the Aut(T')-action on Hom(T', G) induces an Out(T')-
action on the 77 character variety RepT1 (mg,0,G). It is not clear to the author whether there is an

induced action of Out(I") on the Hausdorff character variety in general.
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6.2 Generalities about mapping class groups

The mapping class group of a closed and oriented surface ¥ is the group of isotopy classes of
orientation-preserving homeomorphisms of 3, . In the case of a punctured oriented surface ¥,
the mapping class group is defined to be the group of isotopy classes of orientation-preserving
homeomorphisms of ¥, ,, that fix each puncture individually'. The mapping class group is denoted
by Mod(3, ) and the isotopy class of an orientation-preserving homeomorphism f: ¥,, — X, ,,
is denoted [f] € Mod(X, ). The group law is given by composition and the identity element

correspond to the identity homeomorphism.

Theorem 6.2.1. The mapping class group is finitely presented. Generators can be chosen to be

Dehn twists along simple closed curves on g .

More details about Theorem 6.2.1, including proof and explicit generating family, can be found
in [FM12, §4]. In [GW17], the question of the minimal number of generators of Mod(%g ) is
treated, see also Remark ?7.

A homeomorphism f of ¥, ,, induces a group isomorphism 71 (X4 ., ) = m1(Zg n, f(x)). After
choosing a continuous path from z to f(z), we get an induced automorphism of the fundamental
group of ¥, , (that depends up to conjugation on the choice of the path). This gives a group
homomorphism

Mod(Xg,,,) = Out(myp).

The Dehn—Nielsen Theorem says that it is injective and provides a description of its image.

Theorem 6.2.2 (Dehn-Nielsen Theorem). The mapping class group Mod(X, ) is an index two
subgroup of Out(mg o) for g = 1 (and is trivial for g = 0). Moreover, if ¥4, has negative Euler
characteristic, then the mapping class group Mod(2, ) is an index two subgroup of Out*(myy),
where Out™(my ) is the subgroup of Out(m, ) that consists of the outer automorphisms that act by

conjugation on the generators ¢; of my.,, (in the presentation (1.1.3)).

We refer the reader to [FM12, §8] for more considerations on the Dehn-Nielsen Theorem. The-
orem 6.2.2 implies that the Aut(m, o)-action on the representation variety Hom(m, o, G) induces an
action

Mod(34,0) & Hom(mg 0, G)/Inn(G).

The action is analytic/algebraic on the regular part of the quotient by Lemma 1.3.1. In the case of
a punctured surface, the action of Aut(m,,) on Hom(my ,, G) restricts to an action of Aut*(my )

on any relative representation variety Home (7, G). This gives, by Theorem 6.2.2, an action
Mod(3,,,) & Home(mg pn, G)/ Inn(G),

for any choice of conjugacy classes C € (G/G)". These two actions are what we call the mapping

class group action on character varieties.

n the terminology of [FM12], if punctures are fixed individually, then the group is called the pure mapping class
group. It contrasts with the mapping class group where punctures can be permuted.
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6.3 Properties of the mapping class group action

The first property is that the mapping class group action preserves the Goldman symplectic form.
We start with the case of a closed surface. Let [f] € Mod(X,) and take any 7 € Aut(mg,)
that lies over the image of [f] inside Out(my o). We choose the generator [mg o] of Ha(my0,Z)
that corresponds to the orientation of the surface ¥,0. Since f is orientation-preserving, it
holds that 74[mg0] = [mg0]. For any ¢ € Hom(myo,G), the automorphism 7 induces a map
(dT)g: ZM(7g0,80) = 2 (74,0, 8p0r), v > voT, on the Zariski tangent spaces to the representation

variety.

Lemma 6.3.1. If wg denotes the Goldman symplectic form from Definition 4.0.2, then, for any

¢ € Hom(my 0, G), the following diagram commutes

(wg)
Zl(ﬂ—g,Oagd)) X Zl(ﬂ—g,07g¢) # R

(dr)gx(d7)¢

L L (wg)por
zZ (779,0’9¢OT) X Z (779,0’90507')

In other words, it holds that

T*wg = Wwg.

Proof. Let B: g x g — R be the pairing used in the definition of wg. For any v,w € Z (740, g¢),

we have
(wg)gor(voT,wor)=BwoT,woT) ~ [mg0]
= B(v,w) —~ T«[mg0]-
Since Ty [7mg,0] = [7g,0], we conclude (wg)gpor(voT,woT) = (wg)e(v, w). O

As a consequence of Lemma 6.3.1, we obtain that the Mod(X, ¢)-action on the quotient Hom(mg o, G)/Inn(G)
preserves the Goldman symplectic measure vg from Definition 4.2.11.
The situation is similar for punctured surfaces. Let [f] € Mod(X,,,,) and take any 7 € Aut* (7 ,)
that lies over the image of [ f] inside Out*(m, ). The generator [y, ,] of Ho(7g 1, 07y n, Z) is again
chosen to correspond to the orientation of the surface X, ,,. Similarly as before, 7 [my.,] = [7g.n].
Moreover, the map (dr)y restricts to to a map (d7)g: Zyo,(Tgn,86) = Zpar(Tgms 8gor). Indeed,
note that if v(c;) = & — Ad(¢(c;))& and 7(¢;) = gicig; ', then

(vor)(ci) = (v(gi) + Ad(¢(9:))&) — Ad ((¢ o 7)(c:)) (v(g:) + Ad(d(9:))&:)-

Lemma 6.3.2. If wg denotes the Goldman symplectic form from Definition 4.2.9, then, for any
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¢ € Home(my p, G), the following diagram commutes

(wg)
2 r(Tgms 86) X Zher (Mg ms 8g) —————— R

par par

(dr)px(dT)¢

1 1 (wg)por
Zpa'r‘ (7(-977747 g¢7°7) X Zpar (Trg”fh g¢0T)

In other words, it holds that

T*OJg = Wwg.

The proof is analogous to the proof of Lemma 6.3.1.

The second property is that the mapping class group action also preserves the volume of a
representation. As before, let [f] € Mod(X, ) and take any 7 € Aut*(m,,,) that lies over the image
of [f] inside Out*(my ). Again, T[myn] = [mgn]-

Lemma 6.3.3. Let G be a Hermitian Lie group. For any ¢ € Home(mgy ., G), it holds that
vol(¢ o 7) = vol(¢).

Proof. We compute directly from Definition 5.1.4 that

vol(poT) = jfl(((bo T)*K) ~ [7g.n]
= j7H (% %K) ~ [mgn]
= 7 (¢*K) ~ Te[mg.nl.

We conclude by using 74 [7g.n] = [7g.n]- O

93



A The groups SL(2,C) and SL(2,R)

This appendix is a reminder of the basic properties of the Lie groups SL(2,C) and SL(2,R) and of

some relevant results.

A.1 The group SL(2,C)

The group SL(2,C) is the group of complex 2 x 2 matrices with determinant 1. It is a complex
algebraic group of complex dimension 3. It is also a non-compact simple Lie group. Its center is
Z(SL(2,C)) = {£I}. The only proper parabolic subgroup of SL(2,C), up to conjugation, is the
subgroup of upper triangular matrices. We are interested in the algebraic subgroups of SL(2,C)

and its irreducible subgroups in the sense of Definition 2.2.7.

Theorem A.1 ([Sit75]). Let G be an infinite algebraic subgroup of SL(2,C). Then one of the
following holds:

1. dim G = 3 and G = SL(2,C),
2. dimG = 2 and G is conjugate to the parabolic subgroup of upper triangular matrices,

3. dim G = 1, in which case there are three possibilities

b
{(g _1):a”=1,a,be([:},
a
{(a >\C>:a2—)\02=1,a,ce(€},
c a

for some A € C*, and G is connected and diagonalizable,

(a) G is conjugate to

and G° is unipotent,

(b) G is conjugate to

(c) G is conjugate to

A —-A
SO’\:={<a C):az—)\czzl,a,ce(ﬁ}u{cl C>:—a2+)\02=1,a,ce((:},
c a c —a

for some A € C*, and G° is diagonalizable.

Recall that the algebraic subgroup of SL(2,C) of dimension 0 are necessarily finite (because
algebraic varieties have finitely many connected components in the usual topology, as pointed out
carlier). They are well-understood, see e.g. [Sit75, Prop. 1.2]. Also observe that SO(2,C) = SO~
in the notation above. The irreducible subgroups of SL(2, C) fall into three categories.

Theorem A.2 ([YCo]). Let G be an irreducible subgroup of SL(2,C). Then one of the following
holds:

1. G is Zariski dense in SL(2,C),
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2. G is finite and non-abelian,

3. the Zariski closure of G is conjugate to

N A P I [ )

1 1
Observe that the matrix % 11 conjugates A to SO' in the notation of Theorem A.1. In

particular, A is Zariski closed. It is also disconnected and A° is the subgroup of diagonal matrices.

The anti-diagonal matrices in A have order 4.

Remark A.3. It was established in Lemma 2.2.22 that Zariski dense representations into any alge-
braic group are irreducible. The converse statement for SL(2,C) can sometimes be found in the
literature, see e.g. [Monl6, Rem. 2.13]. It is not true. For instance, given a finite non-abelian
subgroup G of SL(2,C) of order g, then there is a surjective group homomorphism F,, — G, where
Fy ={m,...,7y, is the free group on g generators. The fundamental group of a closed surface of
genus g maps surjectively to F, by a;,b; — ~;, where a;, b; refer to the presentation (1.1.3). This
gives two irreducible representations m, o — SL(2,C) and F;, — SL(2,C) that are irreducible but
not Zariski dense. It is also possible to build an irreducible representation of a closed surface group

with image inside A.

A.2 The groups SL(2,R) and PSL(2,R)

The group SL(2,R) is the subgroup of SL(2,C) consisting of real matrices. It is a real algebraic
group of real dimension 3 that has the topology of an open solid torus. It is a non-compact simple
Lie group with center Z(SL(2,R)) = {+I}. The center-free quotient SL(2,R)/{£I} is denoted
PSL(2,R). The group SL(2,R) is Zariski dense inside SL(2,C) (actually, even the group SL(2,Z)
is Zariski dense in SL(2,C)). The maximal compact subgroup of SL(2,R) is SO(2,R). Note that
SO(2,R) is Zariski closed inside SL(2,R), but the Zariski closure of SO(2,R) inside SL(2,C) is
SO(2,C). The group SL(2,R) is isomorphic to SU(1,1). The group PSL(2,R) is isomorphic to
the matrix group SO(2,1)° of special linear transformations of R® preserving the Hermitian form

y? — xz via the map
2

a 2ab b2
a b

+ — | ac ad+bc bd
c d

2 2cd &2

The group PSL(2,R) can be identified with the group of orientation-preserving isometries of the
upper half-plane H = {z € C : Im(z) > 0}. It acts on H by Mdobius transformations

(a b) az+b
+ S zi= .
c d cz+d

The action extends to the boundary J0H of the upper half-plane.

Lemma A.4. The action of PSL(2,R) on dH is isomorphic to the action of PSL(2,R) on RP' =
R2/R*.
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Proof. Identifying 0H = R U {00}, one can define a homeomorphism f: 0H — RP! by 2 +— [1 : z]
and o0 — [0 : 1]. We claim that f conjugates the two actions of PSL(2,R). Indeed, it is sufficient
to compare stabilizers and it is easy to see that the stabilizer of [1 : 0] € RP' and that of 0 € 0H
coincide with the subgroup of upper triangular matrices in PSL(2, R). O

The open subspace of PSL(2,R) consisting of elements whose trace in absolute value is smaller
than 2 is called the subspace of elliptic elements of PSL(2,R). It is denoted & < PSL(2,R).
Equivalently, an element of PSL(2,R) is elliptic if and only if it has a unique fixed point in H.

b
Lemma A.5. I[fA=+ (a d) 1s elliptic, then b # 0 and ¢ # 0.
c

Proof. If b = 0 or ¢ = 0, then det(A) = ad = 1. So, Tr(A4)? = (a + d)? = 4ad = 4 and A is not
elliptic. O

b
Let A=+ “ J be an elliptic element of PSL(2,R). We denote the unique fixed point of A
c

in H by fix(A). It defines a map fix: £ — H.

Lemma A.6. The unique fized point of A is

_a—d . y/4—(a+d)?
fix(A) = 5o T T ) (A.1)

and the map fix: & — H is analytic.

Proof. The first assertion is a straightforward computation. Since ¢ # 0 by Lemma A.5, the map
fix: £ —» H is analytic. O

The elliptic elements of PSL(2,R) that fix the complex unit i € H are of the form

oty ::i<co?(ﬁ/2) sin(ﬂ/2)> (A2)
—sin(¥/2)  cos(9/2)

for 9 € (0,27). Every A € £ is conjugate to a unique roty4y. This defines a function ¥: £ — (0, 27).
The number 9(A) € (0, 27) is called the angle of rotation of A.

Lemma A.7. The angle of rotation of A is

—c a+d

J(A) = arctan (|c| ardro2

4—(a+t d)2) +e(A), (A.3)

where
0, if(a+d)?>2and(a+d)s>0,

e
(A)=4 m ifatd? <2,
27, if (a+d)? > 2 and (a +d)TE < 0.

|el

Moreover, the function 9: & — (0,27) is analytic.
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Proof. The number ¥(A) can be computed as the complex argument of the complex number

%
dz

c /4 —(a+d)?

_ ((a+4d)?
< B 5 (A.4)

N 2

- 1) —i-(a+d)
z=fix A
Observe that the imaginary part of (A.4) vanishes if and only if a+d = 0, in which case its real part
is equal to —1. This means that the complex number defined by (A.4) takes values inside C \ Rx.
If we think of the complex argument of a number inside C \ Rxq as a function C \ R>g — (0, 27),

then it is analytic. This shows that ¢: £ — (0,27) is an analytic function. O

Lemma A.8. The map
(fix,9): &€ - H x (0, 27)

is an analytic diffeomorphism that identifies the subset of elliptic elements in PSL(2,R) with an
open ball.

Proof. We explained above that the map (fix, ) is analytic. The inverse map sends a point z =

z+1i-y € H and an angle 9 € (0,27) to the elliptic element

rot(z) = + (cos(ﬁ/2)— ;p.yfl sin(19/2) (z2y~1 + y)isin@/Q) ) . (A.5)
—y~Lsin(9/2) cos(9/2) + zy~ L sin(9/2)

Indeed, an immediate computation gives

—2zy~tsin(9/2) ;. 2sin(¥/2)
—2y~1sin(¥/2) 2y~ Lsin(¥/2)

fix(roty(z)) =

T + 1y,

and
cos 2 sin
J(roty(2)) = arg ((4(219/2) _ 1) — i+ (2cos(9/2)) - (—1) - 2;19/2)>
= arg(cos(9) + i sin(19))
= . 0

The elements of PSL(2,R) whose trace in absolute value is equal to 2 are called parabolic.
Parabolic elements are those that have a unique fixed point of the boundary of H. There are two

conjugacy classes of parabolic elements represented by

1 1 1 0
art =+ and ar~ = + . A6
P (0 1) P (1 1) (A.6)

The elements conjugate to par™ are called positively parabolic and those conjugate to par™ negatively
parabolic. Each conjugacy class of parabolic elements is an open annulus whose closures intersect
at the identity.

The elements of PSL(2,R) with a trace larger than 2 in absolute value are called hyperbolic.
Hyperbolic elements have precisely two fixed points on the boundary of H. Any hyperbolic element
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of PSL(2,R) is conjugate to

A0
h =+ ,
YP - (0 )\1>

for a unique A > 0. Hyperbolic conjugacy classes are open annuli.
Elliptic, parabolic and hyperbolic conjugacy classes foliate PSL(2,R) in a way that is illustrated
on Figure 6.1.

Figure 6.1: The elliptic conjugacy classes are drawn in green. They foliate an open ball into disks.
The open ball is bounded by the two parabolic conjugacy classes which have the shape of two red
cones joined at the identity. The hyperbolic conjugacy classes foliate an open solid torus, bounded
by the red cones, into blue annuli.

The next lemma describes the centralizers of elements of PSL(2, R) according to their conjugacy
class.
Lemma A.9. The centralizers of roty, hyp, and par™ are given by

1. Z(roty) = {rotg : 6 € [0,2m)} = PSO(2,R),

2. Z(hyp,) = {hyp, : t > 0} = R,

3. Z(part) = {((1) T) :mER} =R

It is worth noticing that the centralizer of an element of PSL(2, R) always consists of the identity
element and of elements of the same nature (i.e. elliptic, parabolic and hyperbolic). In particular,
two elements of PSL(2,R) different from the identity commute if and only if they have the same
set of fixed points in H v JH.
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B Group (co)homology

This appendix is a short introduction to the topics of group (co)homology and relative group
(co)homology. These notions are important because group cohomology is the natural language to
describe the Zariski tangent spaces to representation varieties. This note is a short summary of
classical literature such as [Nos17, §7], [L6h10] and [BE78].

B.1 Definiton

We begin by recalling the definitions of group (co)homology. Group (co)homology is a functor from
the category of discrete groups G with a left G-module M to the category of graded abelian groups:

o H, - pairs of a discrete group N graded abelian .
’ and a left module groups

By requiring G to be discrete, we obtain a topological interpretation of group (co)homology.
Recall that the natural topology on the fundamental group of a space that admits a universal cover
is the discrete topology, because it is the coarser topology that makes the universal cover a principal

bundle for the deck transformation action. Discrete groups have the following property.

Theorem B.1 (Classifying Space Theorem). If G is a discrete group, then there is a unique

connected space BG, up to canonical homotopy, called the classifying space?® of G, such that
m(BG) =G, m(BG)=0, Vi>2.

A possible definition of the (co)homology of the pair (G, M), where G is a discrete group and
M is a left G-module, would be to say that it is the singular (co)homology of BG with coefficients
in M. We favour however a more intrinsic approach.

Let Z[G] be the integral group ring of G, i.e. the free Z-module generated by the elements of
G. Note that a G-module structure is by definition the same as a Z[G]-module structure. Let
e: Z|G] — Z be the augmentation map defined by g — 1, g € G, and extended Z-linearly to Z[G].
We denote by A the kernel of the augmentation map.

Definition B.2 (Group (co)homology). The group (co)homology of the discrete group G with
coefficients in the left G—module M is

Hy (G, M) := Tor Nz, M), H(G, M) := Extiey(Z, M).

Definition B.2 uses the derived functors Tor and Ext. What this really means is that group
(co)homology can be computed with projective resolutions of Z[G]-modules. Recall that a module

P is projective if it satisfies the following lifting property

1
3. iv

PT>B’

2The names Eilenberg-MacLane space or K(G, 1)-space are also common.
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by which we mean that every morphism P — B factors through every surjective morphism

A — B. Equivalently, P is projective if every short exact sequence of modules

!

0—A —>B —P-—0
splits, i.e. there exists a morphism of modules h: P — B’, called section map, such that f o h is

the identity on P, see [Bou89, Chap. 2, §2, Prop. 4]. A projective resolution P of a module C' (not

necessarily projective) is an exact sequence of projective modules ending in C' — 0:
LB P p 00 (exact).

A projective resolution is denoted P — C. The fundamental property of projective resolutions is
Lemma B.3. Any two projective resolutions of the same module are chain homotopic.

The derived functors in Definition B.2 mean that if P — A = Ker(e) is the projective resolution
of Z|G]-modules

s py 2 P S 7[6] 57— 0,

then
H.(G;M)=H,(P®g M), H*(G;M)= H*(Homg(P;M)).

In particular, Ho(G; M) = A®g M and the negative-degree cohomology modules vanish. Similarly,
H°(G; M) = Homg(A; M). Since any two projective resolutions of A are chain homotopic, group

(co)homology is independent of the choice of the projective resolution P — A.

Example B.4. We compute the homology of free groups with coefficients in a trivial module M.
Let F,, ={aq,...,an) be the free group on n elements. We claim that A is the free Z[F,,]-module
given by A = (a1 — 1,...,a, — 1)z{r,]- The show the inclusion A < (a1 — 1,...,an, — 1)z[r,]
argument as follows. If x € A, then « = >, n;h; where h; € F,, and the n; are integers whose sum
is zero. An induction on the length of h; shows that (h; — 1) € (a1 — 1,...,an, — L)z[p,]- Now,
since x = Y n;h; = Y n;(h; — 1), we conclude that x € (a1 —1,...,a, — 1)z[p,]. Since A is a free
Z[F,,]-module, then
0—A—Z[F,]-—>Z—0

is a free, hence projective, resolution of A. In particular

M, k=0
Hk(FTHM) = M"™ k=1
0, k=2

Note that this corresponds to the homology of a sphere with n + 1 punctures.

B.2 The bar resolution for (co)homology

Our favourite choice of projective resolution of A is the so-called bar resolution. It is defined by
Py := Z[G**] for k > 1. Using the canonical isomorphism M ®¢g Z[GF*1] = M ®7 Z[G*], we

60



obtain that the group homology of G with coefficients in M can be computed as the homology of
the chain complex

Cu(G, M) := M ®; Z[G*], k=0.

It is called the bar chain complex of G and M. The differential 0y : Cx(G, M) — C—_1(G, M) is
defined by

Or(a®(91;---,9k)) =01 - a® (g2, -- -, k)
k—1 '
+ Z (_l)la’® (917 <3 9i-1,9i9i4+1,9i+25 - - - agk‘)
1=1
+(_1)ka’®(gla'-'7gkfl)7 (Bl)

where a € M and (g1, ...,gx) € GF.

The bar cochain complex is given by
Ok(Ga M) = Map(Gk, M)a

where Map(G*; M) is the G-module of set-theoretic functions from G* to M. The differential
ok: CF~1(G; M) — C*(G; M) is defined by

(6ku)(gla cee 7gk) =g1 u(927 e 79143)
k-1 ‘
+ > (=1)*ul(g1,- -, Gi—1,9iGi+1, Git2, - - - Jk)
i=1
+ (_1)ku(g17"'7gk—1)a (B2)

where v € Map(G*¥~1; M). One can easily check that the squares of the differentials d, and 0%
vanish.

There is an obvious relation between the differentials (B.1) and (B.2) given by

(0 u)(g1,- .., 98) = @ (0 (1® (g1,---,91))), (B.3)

where @: M ®z Z[G*™1] — M is the unique lift of the Z-linear map M x Z[GF~!] — M,
(a,(g1,---,95)) — a-ulg,-..,gx)

The sets of k-cocycles and k-coboundaries of the bar complex are denoted Z¥(G, M) and
B¥(G, M), respectively. In particular, the 1-cocycles are

ZYNG, M) := {u: G > M : u(g1g2) = u(g1) + g1 - u(g2), Vg1,92 € G}
and the 1-coboundaries are

BYG,M):={u: G- M:3aeM, ulg)=g-a—a, VYgeG}.
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B.3 Relative group (co)homology

Let K = {K; : i € I} be a family of subgroups of G stable under conjugation. We define the group
(co)homology of G relative to K with coefficients in M. Let Z[G/K] := @,.; Z[|G/K;] be the direct
sum of the free groups generated by the left cosets of K; in G. We denote by A the kernel of the
augmentation map ¢: Z[G/K] — Z.

Definition B.5 (Relative group (co)homology). The relative (co)homology groups of G relative to
K with coefficients in the G-module M are defined by

H, (G, K, M) := T2V 7z, A @¢ M),
H*(G,K, M) := Ext}}(Z, Homg(A; M)).
Observe that
H.(G,K,M) = H,_1(G,A®g M), (B.4)
H*(G,K,M) = H* }(G,Homg(A; M)). (B.5)

In particular, Ho(G,K, M) = H(G,K,M) = 0, H(G,K,M) = A®g M and H'(G,K,M) =
Homg (A; M).
Remark B.6. Definition B.5 makes perfect sense even if K is not assumed to be closed under con-
jugation. This gives a notion of group (co)homology relative to any family of subgroups. However,
this notion is equivalent to the former in the following sense. If K denote the conjugation closure
of IC:

K:={9yKg':9geG KeKk},

then there are canonical isomorphisms
H.(G,K,M) = H,(G,K,M), H*(G,K,M)=H*G,K,M). (B.6)

Indeed, choose a set of coset representatives X for G/K. This gives an identification Z[G/K] =

Z|G/K] which induces the desired isomorphisms. The resulting isomorphisms (B.6) are independent
of the choice of X, see [BET8, Proposition 7.5].

B.4 Bar resolution for relative (co)homology

The bar resolution for relative group (co)homology is obtained from the bar resolution for group
(co)homology using the cone construction. Recall that if A and B are chain complexes and f: B —
A is a morphism of chain complexes, then the cone of f is the chain complex C(f) with differential
d given by

C(f)k =A@ Br-1, d(a,p):=(—da+ f(B),dp).

This construction produces an exact triangle of complexes B - A — C(f) — B[—1] where B[—1]
is the shifted complex obtained from B, also called the suspension of B. The exact triangle induces

a long exact sequence in (co)homology.
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We adopt the shorthand notation

Cr(K, M) := @ Cr(K;, M), CH(K, M) := [ [ C*(K;, M).

el i€l
The relative bar chain complez is given by the cone of the inclusion K; c G, i.e.

Ck(G7’C7M) = Ck(G,M) (‘Bckfl(lcaM)a
~ M ®c (Z[GF @ Z[KF ).

with differential 0y : Cx(G, K, M) — Ci—1(G, K, M) defined by

(g, h) == (= Okg + Y vihi, Ok 1), (B.7)

iel

where g € Cp(G; M) and h = (h;)ier € Cr_1(K; M). Recall that at most finitely many h; are

nonzero so that the sum in (B.7) makes sense. The relative bar cochain complex is defined by

CHG, K, M) : = CHG, M)® C* (K, M),
~ Map (Z[G*] @ Z[K '], M).

The differential 0% : C*(G, K, M) — C**1(G, K, M) is given by

6k(u, f):= (é’ku, UL — 6k*1fi)
= (u ak+17 Uty — fzak)a (BS)
where u € C*(G, M) and f = (f;)ier € C*~1(KC, M). The second equality in (B.8) follows from the

relation (B.3) which implies u0y4+1 = 0*u and foy = 081 f.

There are long exact sequences in group homology and cohomology that read

o =y (S, M) 2 B (G, M) < HY(GL G, M)~ Hy 1 (I, M) — .. (B.9)
s HRL(K, M) < HRNGL K, M) <2 B G, M) S B, M) — (B.10)

We used the shorthand notations Hy (K, M) := @,.; Hp(K;, M) and H*(K, M) := [[,.; H*(K;, M).
The morphisms j and r are induced from the inclusion and restriction on the (co)chain complex

level. The long exact sequences are obtained by applying the derived functors Eth[G] (-, M) and

VA

Tor*[G](-7 M) to the short exact sequence

0—A—>Z[G/K]—7Z— 0.

B.5 Relation to singular (co)homology

The purpose of this section is to explain how the singular (co)homology of a space relates to the

group (co)homology of its fundamental group.

Definition B.7 (Eilenberg-MacLane pair). A pair of topological spaces (X,Y), Y c X, is an
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FEilenberg-MacLane pair of type K(G,K,1), if X is a K(G,1)-CW-complex and if Y = 1Y, where
each Y; is a K (K, 1)-subcomplex of X.

Equivalently, (X,Y) is an Eilenberg-MacLane pair if each inclusion Y; — X induces an injective
homomorphism 71 (Y3, y;) — 71 (X, y;) and if there exists an isomorphism ¢: m1 (X, y;) — G induced

by a suitable choice of path connecting base points such that p(71(Y;,v:)) = K;

71 (Y, yi) —— m1(X, i)
g ¢
K; L SN 6

The standard examples of Eilenberg-MacLane pairs are pairs (X,Y) where X is a K(G, 1)-space
and Y is the boundary of X.

Theorem B.8 ([BE78]). Let (X,Y) be an Eilenberg-MacLane pair of type K(G,K,1). Then there
exist isomorphisms in (co)homology in every degree that relates the long exact sequences of the pairs
(X,Y) and (G,K) such that the following diagram commutes (up to a minus sign for the middle

square)

112

~ ~

HY(K, M) —— H*G,K, M) —— H*G, M) —— H*(K, M)

I

|

I
~ ~ ~

HEY(Y, M) —— H*(X,Y,M) —— H¥(X, M) —— H*(Y, M).

Remark B.9. Observe that if (X,Y) is an Eilenberg-MacLane pair of type K(G, K, 1), then it is
also an Eilenberg-MacLane pair of type K(G,K’,1) where K’ is obtained from K by individually
conjugating its elements. So, as a byproduct of Theorem B.8, we get a natural isomorphism between
the (co)homology of the pairs (G, K) and (G, K’). This isomorphism corresponds to the one induced

by (B.6). In addition there are natural isomorphisms
HJ(X,Y,M) = H,(G,K, M), H“X,Y,M)= H*(G,K,M),

where K denotes the conjugation closure of K introduced in Remark B.6.

We refer the reader to [BE78, Thm. 1.3] for a proof of Theorem B.8.

B.6 Cup product

We introduce the cup product in group cohomology using the bar cochain complex as in [Nosl7,
§7]. Let G be a group and M, M’ be two G-modules. Let u € C*(G, M) and v € C'(G, M’). The
cup product of u and v is defined as the cochain u — v € C**/(G, M ®¢ M') defined by

w— (g1, gk+1) = (g1, 9k) ® g1 gr - V(gk+1,s -, G1)- (B.11)
Lemma B.10. The cup product satisfies the Leibniz rule:

Ry — v) = FFlu — v+ (=1)Fu — o

64



The Leibniz rule implies that the cup product descends to a well-defined G-invariant product
on cohomology:
—: H¥(G, M) ®¢ H(G, M") - H*"(G, M ®@¢ M").

Lemma B.11. Up to the natural identification M Qg M’ =~ M' ® M, it holds that
[u—v] = (=D)Fv —u], Yue Z¥G,M), Yve Z' (G, M.

Proof. We treat the case k = [ = 1. The other cases are similar. We start by computing the
differential of u ® v using (B.2)

—0*(w®v)(z,y) = —u(z) @v(x) + ulzy) ®v(zy) — = - (u(y) @v(y))
w@) @z - uly) + = - uly) @v(z)

=u —v(z,y) +v— u(z,y),

where in the second equality we used the cocycle property u(zy) = u(z) + 2 - u(y). This shows that

U — v + v — u is a coboundary. O

The cup product can be defined on relative cohomology as follows. Let v € C*(G, M) and
feCF YK, M), and v € C'(G, M'). Define the cup product of (u, f) with v to be the cochain

(w— v, f—v)e C*HG,K,M®g M.
It induces a cup product in relative cohomology

—: HYG,K,M)®c H'(G,M') - H*"(G,K,M ®c M"). (B.12)

B.7 Cap product and Poincaré duality

The purpose of [BE78] was to describe a notion of Poincaré duality for group pairs. This can be
done as follows.

Let P — Z be a projective resolution of G-modules. Then P ®¢g P is a projective resolution of
Z for the diagonal G—action on PQgP. Let g = p®q®a € (P®g P)®c M and u € Homg (P, M’).
The cap product of g and u is defined to be

g~ u:=q®(a®up) e PO (M®c M)

Lemma B.12. The cap product is a well-defined operation on complexes and satisfies the Leibniz
rule

k(g ~u) = (—1)l5k+19 ~u+g~ du.

The induced cap product on (co)homology is

~: Hy (G, M) ®c H*(G, M) - H\(G,M ®@¢ M’)
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The definition of the cap product in relative (co)homology uses the pairing

B: (A@G M) ®G Homg(A,M') - M®G M/
(1®a)®ur— a®u(g). (B.13)
The cap product on relative group (co)homology is the dashed arrow that makes the following
diagram commute

Hk_H(G,’C,M) Ra HI(G,IC,MI) e T > HZ(G,M®G MI)

HkJrlfl(Gv A ®a M) ®c Hkil(Ga HOHIG(A, M/))

By~

The equality in the first column is an application of (B.4) and (B.5).

Using a modified version of the pairing (B.13), one can define a second variant of the cap product
~: Hy (G, K, M) @ H*(G, M) — H/(G, K, M ®¢ M").

The two versions of the cup product are natural operations in group (co)homology, see [BE78] for
more details.

The cap product maps the long exact sequence in cohomology for the pair (G, K) to its long
exact sequence in homology. This commutes with the corresponding map in singular homology
under the isomorphism of Theorem B.8. Indeed, let (X,Y’) denote an Eilenberg-MacLane pair of
type K(G,K,1). For any e € H,(G,K,M), let € € H,(X,Y; M) be the image of e under the
isomorphism of Theorem B.8. The following diagram commutes for k = 0,...,n (up to some minus
signs depending on the degree of the two lower squares, see [BE78] for complete details)

H, y(GK.M®cM') —— H, 1 1(K,M®@c M') —— H,  1(G,M ®g M")

Teﬁ Tr(e% Tem

HYG M) ——— HNK, M) ————————— HFY(G, K, M)

E |= E

HY X, M) —————— 5 HN(Y,M') ——— H*Y(X,Y, M)
l@« lv- (&)~ lgﬂ
Hy w(X,Y,M ®c M') — Hyp_j_1(Y, M ®g M') —— Hp_p_1(X, M ®c M).
Here, r denotes the connecting morphism of the long exact sequence (B.9). In particular, the

following square commutes
HMX,Y,M') «+—=—— H*(G,K,M")
H, (X, M ®¢ M') +=— H, (G, M ®c M").

Poincaré duality for de Rham cohomology says that if X is a smooth, compact, connected
manifold of dimension n, and [X] is a generator of H,(X;Z) = Z, then the cap product with [X]
is an isomorphism

[X] ~: Ho(X,R) 5> H,_w(X,R), k=0,...,n.
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In the context of group (co)homology, one introduces the notion of Poincaré duality pairs.

Definition B.13 ((Poincaré) duality pairs). The pair (G, K) is called a duality pair of dimension
n, in short a D™-pair, if there exists a G-module N and an element e € H,,(G, K, N) such that both

e e ~: HYG,M) - H, 1(G,K,N ®c M),
e c ~: HYG,K,M)— H,_1(G,N @z M)

are isomorphisms for every k = 0,...,n and for every G-module M. Moreover, if N can be chosen
to be isomorphic to Z as a group, then (G, K) is called a Poincaré duality pair of dimension n, in
short a PD™-pair.

If (G,K) is a D™-pair, then by letting M = Z[G] and k = n, we obtain H"(G,K,Z[G]) =
Hy(G,N ®¢ Z|G]) = N. Therefore, a duality pair determines a unique dualizing module N up to
isomorphism. For a PD"™-pair we call each of the two generators of H,,(G, K, N) = Z a fundamental
class of (G, K).

Example B.14. Let X be a smooth, compact, connected, manifold of dimension n with non-
empty boundary 0X. Let [X,0X] € H,(X,0X,Z) be a fundamental class. Assume that (X, 0X)
an Eilenberg-MacLane pair of type K(G, kK, 1). Then (G, K) is a PD™-pair with fundamental class
[G, K] given by the image of [X,0X] under the isomorphism of Theorem B.8. In particular, the

following diagram commutes

[X,0X]~

H}n(X,0X,R) Hy(X,R)

=] =

H™(G,K,R) [Gx1~ Ho(G,R).

Here, R is the trivial G-module.

Observe that if (G, K) is a D™-pair, then there exists an induced isomorphism
r(e) ~: [ [H¥(Kis M') — @ Hpo 1 (Kis M ®c M)
il iel

in every degree k and for every G—modules M, M’. Therefore, K must be a finite collection of

subgroups.

Lemma B.15. Let (G,K) be a PD"™-pair and R be the trivial G-module. The cap product in degree

n for the bar resolution is

~: H,(G,K,R)®c H"(G,K,R) - R

[(ga hla ) hM)] ® [(ua f17 ey fm)] g u(g) - Z fl(hl)v <B14>
i=1
where u: G™ — R and fi: K'"~' — R have been extended Z-linearly to Z[G™), respectively Z[ K]
Proof. We only check that (B.14) vanishes if (g, by, ..., hy) is exact. A complete proof is given in
[KM96, Proposition 5.8].
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The condition 0" (u, f1,..., fm) = 0 as defined in (B.8) means that 0"u = 0 and ul g, —0""' f; =
0 for all 4. Since (g, hy, ..., hn) is assumed to be exact, there exist (¢’, h},...,h) ) € Cri1(G, K, R)
such that

(g7h17"'ahm) = an‘i‘l(glvhlla"'ah;n,)

= (Z hi - an+1g/a 6nh’17 ceey anhlm> :

i=1
We compute

m

where in the second equality we applied the relation (B.3). The last expression vanishes because
(u, f1,..., fm) is closed. O

B.8 Parabolic group cohomology

Parabolic group cohomology was introduced in the sixties by André Weil. We give a succinct
introduction inspired from [GHIJW97].

Let G be a discrete group and K = {K; : i € I} be a family of subgroups of G. Let M be a
G-—module and k > 0 an integer. Define the set of parabolic cocycles in the bar complex to be the
set k-cocycle f: G* — M such that all the restrictions [Tk, are exact, i.e. belong to B*(K;, M).

The set of parabolic cocycles in degree k is denoted
k k
Zpor(G, M) € Z"(G, M),

Parabolic cocycles are thus cocycles that are exact on the boundary.

Definition B.16 (Parabolic group cohomology). The parabolic group cohomology of G with coef-
ficients in the G-module M is defined to be

H*, (G, M) := Z*, (G, M)/B*(G, M) c H*(G; M),

par

It follows from Definition B.16 that parabolic group cohomology is related to relative group

cohomology as follows.

Lemma B.17. Let j: H*(G,K,M) — H*(G,M) be the morphism of the long evact sequence
(B.10) for the pair (G,K). Then,

Hy, (G, M) = j(H"(G,K, M)) = H*(G,K, M)/ Kex(j).
The Leibniz rule of Lemma B.10 implies that the kernel and the image of j are orthogonal for
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the cup product (B.12). In particular, there is a non-degenerate induced product

—: HE, (G, M) ®¢ H.,,(G,M') - H"*G,K,M ®; M’). (B.15)

par
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