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Foreword

MICHEL BERTRAND: Vous savez, dans
notre métier, il vaut mieux passer pour
un fou que pour un imbécile.
COMMISSAIRE JUVE: Eh ben alors la,

vous risquez pas la camisole, vous !

Fantomas se déchaine
1965

These notes' are an extended version of a series of mini-courses that I gave in the spring of
2022 at the KIT Karlsruhe and at the University of Heidelberg and in the spring of 2024 at Seoul
National University. The main objective is to introduce the notions of representation varieties and
character varieties from the perspective of both differential geometry and algebraic geometry. It is
common to encounter different definitions of character varieties in the literature, depending on each
author’s “favourite quotient” which varies depending on the context and the applications. I will
try to cover as many of these definitions as possible and explain how they relate to each other. The
notes also aim at providing the reader with an introduction to the symplectic structure of surface
groups representations which I will formulate in therms of group cohomology. Along the way, I also
intend to elaborate on mapping class group dynamics on character varieties, as well as on some
invariants, like the Euler or Toledo numbers, used to discriminate their connected components.

I will try as much as possible to provide precise references to the literature to help the readers
find original statement and proofs. There are a couple options in the literature where one can
find a broad introduction to character varieties (sometimes focusing on surface group represen-
tations; sometimes focusing on the algebraic aspects of the theory). These include, for instance,
Bradlow-Garcia—Prada-Goldman-Wienhard [BGPGWO07], Labourie [Lab13], Marché [Mar22], Mon-
dello [Mon16, §2], and Sikora [Sik12].

I acknowledge contributions by Jacques Audibert, Fernando Camacho Cadena, Xenia Flamm,
Maximilian Schmahl, Irene Seifert, Nicolas Tholozan who read the first version of the notes as

part of my PhD thesis and shared valuable comments. I am very grateful to all of them. This

Iversion 1.3, compiled on June 1, 2024



manuscript also benefited from many informal, nevertheless inspiring, discussions with colleagues
and collaborators. I am particularly grateful to Peter Albers, Brian Collier, James Farre, Bill
Goldman, Antonin Guilloux, Sean Lawton, Gye-Seon Lee, Julien Marché, Beatrice Pozzetti, Max
Riestenberg, Andy Sanders, Anna Wienhard, and Maxime Wolff.



Chapter 1

Background

Overview

The first of two ingredients that we need to define a character variety is a target group. This
group essentially carries the topological structure of the character variety. It will always be a Lie
group, sometimes even an algebraic group. We start by recalling these notions and their properties
in Section 1.1 and 1.2. The second ingredient is a finitely generated group, which will often be a
surface groups—a notion that we introduce below in Section 1.4. Finally, we also provide a fairly

detailed recap on group cohomology from the point of view of the bar complex in Section 1.3.

1.1 Lie groups

This section is short recap on the notions of Lie groups, as well as (semi)simple, reductive, and

quadrable Lie groups.

1.1.1 Generalities

Definition 1.1.1. A Lie group G is a real smooth manifold with a group structure for which the
operations of multiplication and inverse are smooth maps. A Lie group is called a complex Lie

group if it has the structure of a complex manifold and the group operations are holomorphic.

Lie groups always admit an analytic atlas, unique up to analytic diffeomorphism, such that
multiplication and inverse are analytic maps'. Lie groups are not necessarily connected. We
will denote by G° the identity component of G. The centralizer of a subset S — G is denoted
Z(S):={geG:gsg !t =s,VseS}. It is a closed subgroup of G, hence a Lie subgroup of G. The
center of G is the Lie subgroup Z(G) c G.

Example 1.1.2 (Linear Lie groups). The standard examples of Lie groups are groups of invertible
n x n matrices such as GL(n,R) and GL(n,C), and all their closed subgroups, called linear Lie
groups. These include the subgroups of determinant-1 matrices which we denote SL(n,R) and
SL(n,C) and their subgroups SO(n) and SO(n,C), SU(p, q), or Sp(2n,R). The groups GL(n,C),

SL(n,C), and SO(n,C) are also examples of complex linear Lie groups.

I This is a consequence of the Campbell-Hausdorff formula, see e.g. [Ser06, Part I, Chap. IV, §7-8].



The quotient of a Lie group G by its center Z(G) is also a Lie group called the adjoint Lie group
of G. The adjoint Lie groups of linear groups are usually denoted by adding a P in front of the Lie
group’s name. For instance, the adjoint Lie group of SL(n,R) is written PSL(n,R).?

The Lie algebra of a Lie group G is denoted g. Most of the time, we will think of g as the tangent
space to G at the identity. In various places we will make use of the Lie theoretic exponential map
exp: g — G, which, in the case that G is a linear Lie group, is the matrix exponential map. The

adjoint representation of G on g is denoted by Ad: G — Aut(g) and is defined by

Ad(9)(€) = —| gexp(t&)g™!, geG, Eeq.

t=0

By taking the derivative of Ad at the identity, we obtain the adjoint representation of g which is
commonly denoted by ad: g — End(g). If [—,—]: g x g — g denotes the Lie bracket operation on
g, then it holds that

ad(&1)(&) = [€1,&2], &,&%€9.

The kernel of the ad-representation is called the center of g and is denoted by 3(g) := Ker(ad). The
center of g can also be interpreted as the Lie algebra of Z(G)—the center of G.

1.1.2 Simple, semisimple, and reductive Lie groups

We will say that a Lie algebra g is

e simple if it is not abelian and if its only proper ideal is the zero ideal. Since ideals of g are in
one-to-one correspondence with sub-representations of its adjoint representation, g is simple
if and only if its adjoint representation is irreducible and g is not a one-dimensional abelian

Lie algebra.

e semisimple if it has no nonzero abelian ideals. Equivalently, a Lie algebra is semisimple if it
is a direct sum of simple Lie algebras [Bou98, Chap. I, §6.2, Cor. 1]. By Cartan’s criterion, g

is semisimple if and only if its Killing form

K:gxg—-R
(€1, &2) = Tr(ad(&1) ad(&2))

is non-degenerate [Bou98, Chap. I, §6.1, Thm. 1].

e reductive if it is the direct sum of an abelian and a semisimple Lie algebra. Equivalently, g
is reductive if and only if its adjoint representation ad: g — End(g) is completely reducible?,
which is further equivalent to g admitting a faithful, completely reducible, finite-dimensional
representation [Bou98, Chap. I, §6.4, Prop. 5].

We call a connected Lie group simple, semisimple or reductive if its Lie algebra is simple,

semisimple or reductive, respectively. Simple Lie groups are semisimple and semisimple Lie groups

2For more information on PSL(2,R), the reader is referred to Appendix A.
3Recall that a completely reducible representation is a representation that decomposes as a direct sum of irreducible
representations. Such representations are sometimes called semisimple.



are reductive. The groups SL(n,R) for n > 2, Sp(2n,R) and SU(p, q) for p + ¢ = 2 are simple. The

group SO(n)° is simple for n > 3, n # 4 and semisimple for n = 4. In contrast, the group GL(n,R)°

=
is not semisimple for any n > 1 (its Killing form is degenerate). It is however reductive, because
its Lie algebra is the direct sum of the simple Lie algebra of traceless matrices and the abelian Lie
algebra of diagonal matrices. It is worth observing that a connected linear Lie group G ¢ GL(n,R)

is reductive if and only if the trace form

Tr:gxg—->R
(€1,82) = Tr(&1&2)

is non-degenerate. This can be seen as a consequence of the classification of semisimple Lie algebras
and [Bou98, Chap. I, §6.4, Prop. 5]. The previous statement also holds for connected linear Lie
groups G < GL(n, C). If the (in this case, complex-valued) trace form is non-degenerate, then so is
its real part R(Tr): g x g — R which gives a non-degenerate, symmetric, Ad-invariant, real-valued

bilinear form.

1.1.3 Quadrable Lie groups

An important class of Lie groups for the purpose of these notes are those that admit a non-
degenerate, symmetric and Ad-invariant pairing on their Lie algebra. Such Lie groups carry different

names throughout the literature, see [Oval6] for an overview. We opt for the name quadrable.

Definition 1.1.3 (Quadrable Lie groups). A Lie group G is called quadrable if there exists a
bilinear form (also called pairing)

B:gxg—R
which is non-degenerate, symmetric and Ad-invariant.

Quadrable Lie groups are common among the standard Lie groups. For example, all semisim-
ple Lie groups, and more generally all reductive Lie groups, are quadrable. An example of a
non-degenerate, symmetric and Ad-invariant bilinear form on a reductive Lie algebra is given by
taking the Killing form on the semisimple part and any non-degenerate, symmetric bilinear form
on the abelian part. Alternatively, one may consider the trace form associated to a faithful, finite-

dimensional representation® of g.

Example 1.1.4. For instance, SL(2,R) is quadrable. We usually chose to work with the pairing
given by the trace form: Tr: slbR xslbR — R, (£1,&2) — Tr(£1€2). The trace of a matrix is invariant

under conjugation, so the trace form is Ad-invariant. In the basis

e )0

the trace form is given by the pairing 21294y 22+21y2. It is clearly symmetric and non-degenerate.

Actually, in this case, the pairing Tr: slbR x slbR has signature (2,1).

4The trace form of a representation p: g — GL(n,R) is the symmetric bilinear form g x g — R given by
(&1,&2) — Tr(p(&1)p(&2)). For instance, the Killing form is the trace form of the adjoint representation.



Example 1.1.5. The Heisenberg group H is an example of a non-quadrable Lie group. Recall that

H is defined to be the group of strictly upper triangular 3 x 3 real matrices:

T

Il
o O =
S = Q2

b
cl:a,b,ceR
1

The Lie algebra h of H is generated by the three matrices

010 0 0 0 0 01
X=10 0 0], Y=]0 0 1|, Z=1]0 0 0
0 0 O 0 0 O 0 0 O

A simple computation shows that Z commutes with any element of H. Further

1 00 1 00
Adlo 1 1|(X)=X-2Z2Z, Ad|0 1 1[(Y)=Y, (1.1.1)
0 0 1 0 0 1
and
1 10 1 10
AdJo 1 0](X)=X, Ad|O0 1 o|(Y)=Y+2Z. (1.1.2)
0 0 1 0 0 1

So, because of (1.1.1), any symmetric and Ad-invariant bilinear form B: § x h — R, must satisfy
B(X.Z)=B(X — Z,Z) and B(X,Y) = B(X — Z,Y)
which implies B(Z, Z) = 0 and B(Y, Z) = 0. Moreover, because of (1.1.2), it must also satisfy
B(X,Y)=B(X,Y +2)

and thus B(X, Z) = 0. This shows that B is degenerate.

If reductive Lie groups are always quadrable, it is not true that every quadrable Lie group is

reductive. This was already pointed by Goldman in [Gol84, Footnote p. 204]. Here is an example.

Example 1.1.6. Let G be the connected, simply connected Lie group whose Lie algebra is g =
R3@R? with the Lie bracket defined by [(u1,u2), (vi,v2)] = (0,u; x v1), where x denotes the cross
product on R3. We claim that G is quadrable but not reductive.

Let us first prove that G is not reductive. We will actually prove something stronger, namely
that the center of g (defined as the kernel of the adjoint representation of g in Section 1.1) is
3(g) = [g,9]. This will of course imply that g is not reductive. To see that 3(g) = [g,g], first

observe that for u,v,w € g, we have

[ua [an]] = [uv (0,1}1 X wl)] = (Ovul X 0) = (070)



Conversely, if € € g is such that [u,&] = (0,u; x &) = (0,0) for every u € g, then it must have
&1 = 0 showing that & € [g, g

In order to see that g is quadrable, consider the bilinear form

B:gxg—-R

(u,v) — (ug,ve) + (ug, v1),

where (—,—) denotes the standard scalar product on R3. Clearly, B is symmetric and non-
degenerate. We prove that B is Ad-invariant in two steps. First, we prove that it is ad-invariant

which means that for every u,v,w € g, it holds that
B([u,v], w) + B(v, [u,w]) = 0.
This can be seen by the following computation:
B(v, [u,w]) = <{v1,u1 X wyy ={wy,v1 X u1) = B(w,[v,u]) = —B([u,v],w).

Now, we explain how Ad-invariance follows from ad-invariance. Since the Lie exponential exp: g —
G is a local diffeomorphism at 0 € g and G (assumed to be connected here) is generated by a
neighbourhood of the identity element, it’s enough to check that B is Ad-invariant on exp(g).
Given &, u, v € g, define

f(t) := B(Ad(exp(t&))u, Ad(exp(t§))v).

Then f(0) = B(u,v) and

f1(0) = B([¢,u],v) + B([¢,v],u]) =0
by ad-invariance. Using that exp((t + s)£) = exp(s€) exp(t€), we can easily that f/(t) = 0 for every
t. This implies that f is constant. The relation f(1) = f(0) exactly shows that B is Ad-invariant

on exp(g).
This example of a quadrable, but not reductive, Lie algebra can be generalized as follows.

From a quadrable Lie algebra g with pairing B, construct the Lie algebra g x g with Lie bracket
[(£1,€2), (C1,¢2)]gxg = (0,[&1,Ci]g). Similar arguments as above show that g x g is not reductive.

To prove that however g x g is quadrable, consider the symmetric and non-degenerate pairing

B ((&,&), (¢, ¢2)) == B(&1,G) + B(&,G).

Again, we can see that B is Ad-invariant by the reasoning as above.

10



1.2 Algebraic groups

Definition 1.2.1. A group G is called an algebraic group if it is an algebraic variety® and if the

operations are regular maps.

The Zariski closure of any subgroup of G is an algebraic subgroup [Mill7, Lem. 1.40] and any
algebraic subgroup of G is Zariski closed [Mill7, Prop. 1.41]. For instance, the centralizer Z(S)
of a subset S © G is Zariski closed, hence an algebraic subgroup. All algebraic groups over the
fields of real or complex numbers, respectively called real or complezx algebraic groups, are also Lie

groups, see [Mill3, 111, §2] and references therein.

Example 1.2.2 (Linear algebraic groups). Let K denote either R or C. The group GL(n,K),
and all its Zariski closed subgroups, such as SL(n,K), Sp(2n,K) or SO(n,K), are algebraic groups.
They are called linear algebraic groups. Algebraic groups, however, are not necessarily linear (for
instance, elliptic curves are non-linear algebraic groups). The group SU(p,q) is a real algebraic

group, but is not a complex algebraic variety, see e.g. [SKKT00, Exercise 1.1.2].

Other examples of real algebraic groups include PGL(n,R) for every n > 1 as it can be seen as
the group of automorphisms of the n x n real matrices, which is an algebraic subgroup of GL(n?, R).
For the same reason, PGL(n,C) = PSL(n,C) is a complex algebraic group for every n > 1. When
n is odd, then PSL(n,R) = PGL(n,R) and so PSL(n,R) is also algebraic. However, when n is
even, then PSL(n,R) = PGL(n,R)g is only a semi-algebraic group.’

1.2.1 Reductive algebraic groups

Definition 1.2.3. Any algebraic group contains a unique maximal normal connected solvable
subgroup called the radical, see [Mil17, Chap. 6, §h]. A reductive algebraic group is a connected

algebraic group whose radical over C is an algebraic torus, i.e. isomorphic to (C*)™ for some n > 0.

A reductive algebraic group over the fields of real or complex numbers is in particular a reductive

Lie group in the sense of Section 1.1.2, hence quadrable [Mil13, 11, §4].

Example 1.2.4. Connected linear algebraic groups G ¢ GL(n,C) are reductive if and only if the
trace form g x g — C, (£1,&) — Tr(£1&2) is non-degenerate. In particular, SL(n,C) for n > 2,
Sp(2n,C) and SO(n,C) for n > 3 are reductive algebraic groups.

1.2.2 The groups SL(2,C) and SL(2,R)

The group SL(2,C) is the group of complex 2 x 2 matrices with determinant 1. It is a reductive
complex algebraic group of complex dimension 3. It is also a non-compact and simple complex
Lie group. The group SL(2,C) is irreducible in the sense that it does preserve an proper subspace
when it acts linearly on C2. Its center is Z(SL(2,C)) = {£I}, where I denotes the 2 x 2 identity

5In the context of this work, an algebraic variety is understood to be the zero locus of a set of polynomial equations
over R or C (in other words, algebraic varieties are always affine). We make no assumption about irreducibility and, in
particular, we don’t distinguish algebraic varieties and algebraic sets. Morphisms of algebraic varieties are restrictions
of polynomial maps and are called regular maps.

6Polynomials equalities are not enough to write PSL{n,R) when n is even; we have to use polynomials inequalities
too. When this is the case, we say that the group is semi-algebraic.

11



matrix. The case of SL(2, C) is interesting because we have a complete understanding of its algebraic

subgroups from Sit’s classification.

Theorem 1.2.5 ([Sit75]). If G is an infinite algebraic subgroup of SL(2,C), then one the following
holds:

1. dim¢ G =3 and G = SL(2,C).
2. dimc G = 2 and G is conjugate to the parabolic subgroup of upper triangular matrices.

3. dimc G = 1 and there are three possibilities:

b
{(?} _1>:a"=1,a,be(C},
a

and G has n connected components.

(a) G is conjugate to

(b) G is conjugate to SO(2,C), and G is connected and abelian.
(¢) G is conjugate to SO(2,C)uiSO(2,C), and G is abelian with two connected components.
Moreover, G is irreducible if and only if G = SL(2,C) or if G is conjugate to SO(2,C) uiSO(2,C).

Recall that an algebraic subgroup of SL(2,C) of complex dimension 0 is necessarily finite (be-
cause algebraic varieties have finitely many connected components in the usual topology, as pointed
out earlier). These groups are well-understood too, see e.g. [Sit75, Prop. 1.2]. Finite subgroups of
SL(2,C) are irreducible if they are non-abelian.

The real points of SL(2,C) give the real algebraic group SL(2,R), which is a simple and con-
nected Lie group. The group SL(2, R) is irreducible in the sense that it does not preserve any proper

subspace of R2. From the list of Theorem 1.2.5, we can obtain the list of algebraic subgroups of
SL(2,R).

Theorem 1.2.6. If G is an infinite algebraic subgroup of SL(2,R), then one the following holds:
1. dimg G = 3 and G = SL(2,R).
2. dimgp G = 2 and G is conjugate to the parabolic subgroup of upper triangular matrices.

3. dimg G = 1 and there are three possibilities:

1 b
:beR},
0 1
and G s connected and abelian.

(6 (G 2o

and G is has two connected components.

(a) G is conjugate to

(b) G is conjugate to

12



(c) G is conjugate to SO(2), and G is connected and abelian.

(d) G is conjugate to SO(1,1), and G has two connected components.

1
0) SO(1,1),

(e) G is conjugate to

0
SO(1,1) u (
and G has four connected components.

Moreover, G is irreducible if and only if G = SL(2,R) or if G is conjugate to either SO(2) or to

SO(1,1) U ( 0 é) SO(1,1).

1.3 Group (co)homology

This section is a short introduction to group (co)homology and relative group (co)homology. These
notions are important because group cohomology is the natural language to describe the Zariski
tangent spaces to character varieties as we will see in Section 2.3 below. This note is a short
summary of classical literature such as [Nosl7, §7], [L6h10] and [BET7S].

1.3.1 Definiton

We begin by recalling the definitions of group (co)homology. Group (co)homology is a functor from
the category of discrete groups I' with a left I-module M to the category of graded abelian groups:

o H, - pairs of a discrete group N graded abelian .
’ and a left module groups

By requiring I' to be discrete, we obtain a topological interpretation of group (co)homology.
Recall that the natural topology on the fundamental group of a space that admits a universal cover
is the discrete topology, because it is the coarser topology that makes the universal cover a principal

bundle for the deck transformation action. Discrete groups have the following property.

Theorem 1.3.1 (Classifying Space Theorem). If ' is a discrete group, then there is a unique

connected space BT, up to canonical homotopy, called the classifying space” of G, such that
m(BT) =T, m(Bl)=0, Vi>2.

A possible definition of the (co)homology of the pair (T', M), where T is a discrete group and
M is a left T-module, would be to say that it is the singular (co)homology of BT with coefficients
in M. We favour however a more intrinsic approach.

Let Z[I'] be the integral group ring of T', i.e. the free Z-module generated by the elements of
I'. Note that a I'-module structure is by definition the same as a Z[[']-module structure. Let
e: Z[I'l = Z be the augmentation map defined by g — 1, g € I',; and extended Z-linearly to Z[I'].
We denote by A the kernel of the augmentation map.

"The names FEilenberg-MacLane space or K(T',1) space are also common.

13



Definition 1.3.2 (Group (co)homology). The group (co)homology of the discrete group I" with
coefficients in the left I'-module M is

Hy (D, M) = Tory" (2, M),  H"D, M) = Ext(Z, M).

Definition 1.3.2 uses the derived functors Tor and Ext. What this really means is that group
(co)homology can be computed with projective resolutions of Z[I']-modules. Recall that a module

P is projective if it satisfies the following lifting property
A

1
3 iv

-

PT>B’

by which we mean that every morphism P — B factors through every surjective morphism A — B.

Equivalently, P is projective if every short exact sequence of modules

0—A B Lp o
splits, i.e. there exists a morphism of modules h: P — B’, called section map, such that f o h is
the identity on P, see [Bou89, Chap. 2, §2, Prop. 4]. A projective resolution P of a module C' (not

necessarily projective) is an exact sequence of projective modules ending in C' — 0:
P p 00 (exact).

A projective resolution is denoted P — C. The fundamental property of projective resolutions is
Lemma 1.3.3. Any two projective resolutions of the same module are chain homotopic.

The derived functors in Definition 1.3.2 mean that if P - A = Ker(e) is the projective

resolution of Z[I']-modules
B Py S 7T -5 7 — 0,

then
H(T,M)=H,(P® M), H*(T,M)= H*(Homp(P;M)).

In particular, Hyo(T', M) = A®r M and the negative-degree cohomology modules vanish. Similarly,
HO(T', M) = Homr(A, M). Since any two projective resolutions of A are chain homotopic, group

(co)homology is independent of the choice of the projective resolution P — A.

Example 1.3.4. We compute the homology of free groups with coefficients in a trivial module M.
Let F,, = {71,-..,7n, be the free group on n elements. We claim that A is the free Z[F,]-module
given by A = {(y1 — 1,...,9%, — L)gp,]. The show the inclusion A < {y; — 1,...,7 — Lg(p,]s
argument as follows. If z € A, then © = Y n;h; where h; € F,, and the n; are integers whose sum
is zero. An induction on the length of h; shows that (h; — 1) € {(y1 —1,...,%, — L)z[p,]- Now,
since x = Y n;h; = >, n;(h; — 1), we conclude that x € (y1 —1,..., 9, — 1)z[p,]. Since A is a free
Z[F,]-module, then
0—A—Z[F,]—7Z—0
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is a free, hence projective, resolution of A. In particular

M, k=0
Hy(Fo,M)={ M", k=1
0, k=2

Note that this corresponds to the homology of a sphere with n + 1 punctures, which is coherent by
Theorem 1.3.1 since the fundamental group of a sphere with n + 1 punctures is a free group on n
generators (see also Definition 1.4.1).

1.3.2 The bar resolution

Our favourite choice of projective resolution of A is the so-called bar resolution. It is defined by
Py, := Z[T**1] for k > 1. Using the canonical isomorphism M ®r Z[I'**1] = M ®z Z[T'*], we obtain
that the group homology of I" with coefficients in M can be computed as the homology of the chain
complex

Cu(D, M) == M ®z Z[T*], k>=0.

It is called the bar chain complex of T' and M. The differential dy: Cy(I', M) — Ci_1(I', M) is
defined by

Or(a®(g1,---,9r)) =91 - a® (92, -, k)
k—1 .
+ Z (=1D)'a®(g1,--,9i-1,9i9i+1,Gir2> - - - Ik
i=1
+(_1)ka®(917~--a9k—1), (131)
where a € M and (g1, ...,gx) € I'*. The bar cochain complex is given by
C*(T, M) := Map(I'*, M), k>0,

where Map(I'*, M) is the I'-module of set-theoretic functions from I'* to M. The differential
oF: CF1(, M) — C*(I', M) is defined by

(@*u)(91,-- -, 9%) =g1 - u(g2, - - -, gr)
k—1 4
+ (_1)lu(gla'~'agi—1agigi+17gi+27'"7gk)

1

1) u(g, ., gk1), (1.3.2)

+

—~ =

where u € Map(I'*', M) and (g1,...,9x) € T'*. One can easily check that the squares of the
differentials 0 and ¢* vanish. The sets of k-cocycles and k-coboundaries of the bar complex are
denoted by Z*(I', M) and B*(I", M), respectively. For example, the 1-cocycles are

ZND,M) = {u: T > M :u(g1g2) = u(g1) + g1 - u(g2), Vg1,92 €'}
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and the 1-coboundaries are
B, M):={u:T - M:3aeM, u(g)=g-a—a, VYgeT}.
There is an obvious relation between the differentials (1.3.1) and (1.3.2) given by

(@) (g1, .. ) = W(@(1® (g1.-- -, 9x))), (1.3.3)

where @: M®zZ[['*~1] — M is the unique lift of the Z-linear map M xZ[T*~1] — M, (a, (g1,...,9%)) =
a-u(gi,.- - gk)-

1.3.3 Relative group (co)homology

Let A = {A; : i € I} be a family of subgroups of I" stable under conjugation. We define the group
(co)homology of I' relative to A with coefficients in M. Let Z[I'/A] := @,; Z[I'/A;] be the direct
sum of the free groups generated by the left cosets of A; in I'. We denote by A the kernel of the
augmentation map e: Z[I'/A] — Z.

Definition 1.3.5 (Relative group (co)homology). The relative (co)homology groups of T relative
to K with coeflicients in the I'-module M are defined by

H,(T, A, M) = Tor“™(z, A @r M),

H*(T, A, M) := Ext**}(Z, Homp (A, M)).

Z[T]

Observe that
Hy(D,A, M) = Hy (T, A®r M), (1.3.4)
H*(T,A, M) = H*'(G,Homp (A, M)). (1.3.5)

In particular, Ho(T,A,M) = H(T,A,M) = 0, Hy(I[',A,M) = A®~ M and H'(I',A,M) =
Homp (A, M).
Remark 1.3.6. Definition 1.3.5 makes perfect sense even if A is not assumed to be closed under con-
jugation. This gives a notion of group (co)homology relative to any family of subgroups. However,
this notion is equivalent to the former in the following sense. If A denote the conjugation closure
of A:

A= {ghig ' :geTl,A;e A},

then there are canonical isomorphisms
H.(T,A,M) =~ H,(T,A,M), H*(T,A,M)=~H*(T,A,M). (1.3.6)

Indeed, choose a set of coset representatives X' for I'/A. This gives an identification Z[I'/A] =

Z|T'/A] which induces the desired isomorphisms. The resulting isomorphisms (1.3.6) are indepen-
dent of the choice of X, see [BE78, Proposition 7.5].
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1.3.4 Bar resolution for relative (co)homology

The bar resolution for relative group (co)homology is obtained from the bar resolution for group
(co)homology using the cone construction. Recall that if A and B are chain complexes and f: B —
A is a morphism of chain complexes, then the cone of f is the chain complex C(f) with differential
d given by

C(f)k = Ar®Bi-1, d(a,B):=(—da+ f(B),dB).

This construction produces an exact triangle of complexes B — A — C(f) — B[—1] where B[—1]
is the shifted complex obtained from B, also called the suspension of B. The exact triangle induces

a long exact sequence in (co)homology. We adopt the shorthand notation

Cr(A, M) = @ Ci(Ay, M), CHA, M) =] CHAs, M).

i€l i€l
The relative bar chain complez is given by the cone of the inclusion K; c T, i.e.

Ck(FaA>M) L= Ck(F?M) ®Ck71(A7M)7
~ M @r (Z[T*] @ Z[A*1]).

with differential 0y : Cx (T, A, M) — Cx_1(T', A, M) defined by

(g, h) = (= Okg + Y, 1hi, O 1h), (1.3.7)
iel
where g € Cp(T, M) and h = (h;)ier € Cr_1(A, M). Recall that at most finitely many h; are
nonzero so that the sum in (1.3.7) makes sense. The relative bar cochain complez is defined by
C*T,A, M) : = CHT,M)®C" (A, M),
> Map(I'*, M) @ [ [ Map(A}~*, M).

el

The differential 6*: C¥(T', A, M) — C**3(I', A, M) is given by

616(,“’ f) L= (akuv Uty — 6k71fi)
= (uOps1, w1y — fi0k), (1.3.8)
where u € C¥(I', M) and f = (f;)ier € C*1(A, M). The second equality in (1.3.8) follows from the

relation (1.3.3) which implies udy,1 = 0*u and fo,, = 0*~1f.

1.3.5 Long exact sequences

There are long exact sequences in group homology and cohomology that read

oo Hy(A, M) QY g, M) < Hy(T, A, M)~ Hy_ (A, M) — . .. (1.3.9)
o= HF YA, M) -5 BT, A, M) -2 B, M) S BRA M) — (1.3.10)
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We used the shorthand notations Hy (A, M) = @,; He(A;, M) and H*(A, M) = [],.; H*(Ai, M).
The morphisms j and 7 are induced from the inclusion and restriction on the (co)chain complex
level. The long exact sequences are obtained by applying the derived functors Extz[r](—, M) and

Torf[r](—, M) to the short exact sequence

00— A—Z[I'/A] —7Z —0.

1.3.6 Relation to singular (co)homology

The purpose of this section is to explain how the singular (co)homology of a space relates to the

group (co)homology of its fundamental group.

Definition 1.3.7 (Eilenberg-MacLane pair). A pair of topological spaces (X,Y) with Y ¢ X is
called an Eilenberg-MacLane pair of type K(I', A, 1), if X is a K(T',1) CW-complex and if Y = 01Y;
where each Y; is a K(A;,1) subcomplex of X.

Equivalently, (X,Y) is an Eilenberg-MacLane pair if each inclusion Y; < X induces an injective
homomorphism 7 (Y;, y;) — 71 (X, y;) and if there exists an isomorphism ¢: 71(X,y;) — I induced

by a suitable choice of path connecting base points such that o(71(Y;, ;) = A;

T (Ye, yi) —— m(X, 9:)

|+ [+

A —" T

The standard examples of Eilenberg-MacLane pairs are pairs (X,Y’) where X is a K (I, 1)-space
and Y is the boundary of X.

Theorem 1.3.8 ([BE78]). Let (X,Y) be an Eilenberg-MacLane pair of type K(I', A, 1). Then there
exist isomorphisms in (co)homology in every degree that relates the long exact sequences of the pairs
(X,Y) and (T, A) such that the following diagram commutes (up to a minus sign for the middle

square)

Hk 1(

-

I

M) —— HKT, A, M) — H*T, M) —— H*(A, M)

HFYY,M) —— H*(X,Y,M) —— H*(X,M) —— H*(Y,M).
Remark 1.3.9. Observe that if (X,Y") is an Eilenberg-MacLane pair of type K(I', A, 1), then it is
also an Eilenberg-MacLane pair of type K(I',A’,1) where A’ is obtained from A by individually
conjugating its elements. So, as a byproduct of Theorem 1.3.8, we get a natural isomorphism
between the (co)homology of the pairs (I', A) and (I, A’). This isomorphism corresponds to the one

induced by (1.3.6). In addition there are natural isomorphisms
H*(X7KM)2H*(FaK7M)7 H*(X7Y7M);H*(F?K7M)7

where A denotes the conjugation closure of A introduced in Remark 1.3.6.

We refer the reader to [BE78, Thm. 1.3] for a proof of Theorem 1.3.8.
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1.3.7 Cup product

We introduce the cup product in group cohomology using the bar cochain complex as in [Nosl7,
§7]. Let T be a discrete group and M, M’ be two I'-modules.

Definition 1.3.10 (Cup product). The cup product of u e C*(I', M) and v € CY(I', M") is defined
as the cochain u — v € C**Y(T', M ®p M) defined by

u—v(g1, ., Grtt) = u(g1s - 9k) ® 91 Gk - V(Grt1s-- -5 1) (1.3.11)

There is also a relative version of the cup product defined as follows. For u € C*(I', M) and
feCk 1A, M), and v e C{(T, M"), the cup product of (u, f) with v to be the cochain

(u— v, f—wv)e CFYT A, M®r M).

Lemma 1.3.11. The cup product satisfies the Leibniz rule. For every u € C*(I', M) and v €
CYT, M"), it holds
Ry — v) = "y — v+ (=1)Fu — 0.

The Leibniz rule implies that the cup product descends to a well-defined G-invariant product
on cohomology:
—: HYT, M) ®q H(T, M') - H*Y(I', M ®p M").

And similarly in relative cohomology
—: HYI, A, M) ®r H(T, M') - H**Y(T', A, M ®- M"). (1.3.12)

Without further assumptions, the cup product in cohomology may be a degenerate pairing. We
will see an example where it is non-degenerate in Section 1.3.8. Depending on the degree, the cup

product may be symmetric or anti-symmetric. This is shown by the next lemma.
Lemma 1.3.12. Up to the natural identification M Q@r M’ =~ M' Qr M, it holds that
[u—v] = (=D)*[v—u], YueZ¥I, M), Vve ZY(T,M).

Proof. We treat the case k =

Il = 1. The other cases are similar. We start by computing the
differential of u ® v using (1.3.2)

—0*(w®v)(x,y) = —u(w) ®v(x) + ulzy) ® v(zy) — 7 - (u(y) @ v(y))
— u(2) @z - uly) + - uly) O v(x)

=u—v(z,y) +v—u(,y),

where in the second equality we used the cocycle property u(zy) = u(z) + 2 - u(y). This shows that

U — v + v — u is a coboundary. O
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1.3.8 Cap product and Poincaré duality

The purpose of [BE78] was to describe a notion of Poincaré duality for group pairs. This can be
done as follows. Let P — Z be a projective resolution of I'-modules. Then P ®p P is a projective

resolution of Z for the diagonal I'-action on P ®r P.

Definition 1.3.13 (Cap product). Let g = p®q¢®a € (P ®¢ P) ®c M and u € Homg (P, M’).
The cap product of g and u is defined to be

g~u=q®@a®u(p)) € PQr (Mer M).

Lemma 1.3.14. The cap product is a well-defined operation on complexes and satisfies the Leibniz
rule

O(g ~u) = (=1)'0ks19 ~u+g~ du.

The induced cap product on (co)homology is
~: Hp (T, M) ®r H*(G, M') — H)(T', M ® M")
The definition of the cap product in relative (co)homology uses the pairing

B: (A@F M) ®1" HOHIG(A,M/) i M®F M/
(9®a) ®u > a®u(g). (1.3.13)

Definition 1.3.15 (Cap product-relative). The cap product on relative group (co)homology is the

dashed arrow that makes the following diagram commute.

Hyy (T, A, M) @ H (T, A M) - » Hy(L, M ®r M’)

Hk+l_1(I‘, A Rr M) Qr Hk_l(F, HOIHF(A, MI))

By~

The equality in the first column is an application of (1.3.4) and (1.3.5). Using a modified version

of the pairing (1.3.13), one can define a second variant of the cap product
~: Hyy(T,A, M) ®p HY(I', M) — Hy(T,A, M ® M’).

The two versions of the cup product are natural operations in group (co)homology as described
and proved in [BE78]. The cap product maps the long exact sequence in cohomology for the
pair (I, A) to its long exact sequence in homology. This commutes with the corresponding map in
singular homology under the isomorphism of Theorem 1.3.8. Indeed, let (X,Y) denote an Eilenberg-
MacLane pair of type K(I',A,1). For any e € H,(I', A, M), let € € H,(X,Y, M) be the image of
e under the isomorphism of Theorem 1.3.8. The following diagram commutes for k = 0,...,n (up
to some minus signs depending on the degree of the two lower squares, see [BE78] for complete
details).
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Hn,k(F,A,]V[ ®1" M’) —_— Hn,kfl(A,]V[ ®1" ]\/f’) —_— Hn,k,l(l“,]\/[ ®[‘ All)

Teﬁ %e)ﬁ Teﬁ

H*O, M) —— s HF(A,M') —— H* (T, A, M)

E E E

HYX, M) —— s HYY,M') —— H*1(X,Y, M)

léf—\ lr ()~ léﬁ

Hy (X, Y, M & M') —— Hy_j_1(Y,M ®p M') — Hy_p_1(X, M @ M)

In the above diagram, r denotes the connecting morphism of the long exact sequence (1.3.9). In

particular, the following square commutes.

HMX,Y,M') «+——=—— H*T,A, M)

[ |-

H, 1(X,M @ M') +=— H, (', M ® M)

Poincaré duality for de Rham cohomology says that if X is a smooth, compact, connected
manifold of dimension n, and [X] is a generator of H,,(X,Z) = Z, then the cap product with [X]
is an isomorphism

[X] ~: H*.(X,R) 5 H,_(X,R), k=0,...,n.

In the context of group (co)homology, one introduces the notion of Poincaré duality pairs.

Definition 1.3.16 (Duality pairs). The pair (I, A) is called a duality pair of dimension n, in short
a D™-pair, if there exists a G-module N and an element e € H,, (I, A, N) such that both

o e ~: H¥(T',M) > H, (T,A,N ® M)
e e ~: HYT',A,M) — H,,_, (I, N @ M)

are isomorphisms for every k = 0,...,n and for every I'-module M. Moreover, if N can be chosen
to be isomorphic to Z as a group, then (I, A) is called a Poincaré duality pair of dimension n, in
short a PD™-pair.

If (T',A) is a D™-pair, then by letting M = Z[I'] and k¥ = n, we obtain H"(T',A,Z[l]) =
Hy(T', N ®r Z[I']) = N. Therefore, a duality pair determines a unique dualizing module N up to

isomorphism.

Definition 1.3.17 (Fundamental class). For a PD™-pair we call each of the two generators of
H,(T',A,N) = Z a fundamental class of (T', A).

Example 1.3.18. Let X be a smooth, compact, connected, manifold of dimension n with non-
empty boundary 0X. Let [X,0X] € H,(X,0X,Z) be a fundamental class. Assume that (X,0X)
an Eilenberg-MacLane pair of type K(I', A,1). Then (T, A) is a PD™-pair with fundamental class
[T, A] given by the image of [X,0X] under the isomorphism of Theorem 1.3.8. In particular, the

following diagram commutes.
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[T, A]~

Here, R is the trivial I'-module.

Observe that if (T, A) is a D™-pair, then there exists an induced isomorphism
r(e) ~: HHk(Ai7M/) > @ Hp 1N, M M)
iel iel
in every degree k and for every I'-modules M, M’. Therefore, A must be a finite collection of

subgroups.

Lemma 1.3.19. Let (I, A) be a PD"-pair and R be the trivial I'-module. The cap product in degree

n for the bar resolution is

~: Hy(D,A,R)®p H"(I',A,R) > R

[(ga hla B hm)] ® [(u7f17 .. 'afm)] e u(g) - Z fl(hz)a (1314)

where u: T™ — R and f;: A7~ — R have been extended Z-linearly to Z[T™], respectively Z[AT'].

Proof. We only check that (1.3.14) vanishes if (g, hi,...,h,,) is exact. A complete proof is given
in [KM96, Proposition 5.8].

The condition 0" (u, f1, ..., fm) = 0 as defined in (1.3.8) means that 0"u = 0 and ut,, —0""' f; =
0 for all ¢. Since (g, h1,...,hn,) is assumed to be exact, there exist (¢',hf,...,h.,) € Cri1 (T, A R)
such that

(gvhlvu'ahm) = an+1(glahlla"'ah;n)

- (Z Bl — Ony1g’s Onhl, ..., 6nh’m> :
i=1

We compute

u(g) = Y, filhi) = Y ul i, (h) = w(@ni1g’) = D fi(@nh))
=1 =1 i=1
= Y ulg, () = 0™u(g') = >, " fu(hp),
=1 =1

where in the second equality we applied the relation (1.3.3). The last expression vanishes because
(u, f1,..., fm) is closed. .
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1.3.9 Parabolic group cohomology

Parabolic group cohomology was introduced in the sixties by André Weil. We give a succinct
introduction inspired from [GHIJW97] and [Law09]. Let I' be a discrete group and A = {A; : i € I}
be a family of subgroups of I'. Let M be a I'module and k£ > 0 an integer.

Definition 1.3.20 (Parabolic cocycles). Define the set of parabolic cocycles in the bar complex
to be the set k-cocycle f: I'* — M such that all the restrictions f1a, are exact, i.e. belong to
BF¥(A;, M). The set of parabolic cocycles in degree k is denoted

zZF (D,M) c Z8(, M).

par
Parabolic cocycles are thus cocycles that are exact on the boundary.

Definition 1.3.21 (Parabolic group cohomology). The parabolic group cohomology of T' with co-
efficients in the I'-module M is defined to be
Hy. (T, M) =273 (T,M)/B*(I', M) c H*(T', M).
It follows from Definition 1.3.21 that parabolic group cohomology is related to relative group

cohomology as follows.

Lemma 1.3.22. Letj: H*(T, A, M) — H*(T, M) be the morphism of the long ezact sequence (1.3.10)
for the pair (T,A). Then,
Hpo (D, M) = j(H"(L, A, M)) = H"(T, A, M)/ Ker(j).
It is not hard to see that the orthogonal of Hzlmr(l", M') ¢ H(T', M") for the cup product defined
in (1.3.12) is the kernel of j inside H*(T', A, M). This is a consequence of the Leibniz rule from
Lemma 1.3.11. In particular, the cup product induces a pairing

—: HY, (D, M) ®r H,.(T',M") » H*Y (I, A, M @ M"). (1.3.15)

par

If (T, A) is a PD"-pair with n = k + [, then the pairing (1.3.15) is non-degenerate. Actually, the
cup product (1.3.12), before restriction to H;,M(F, M"), is also non-degenerate. This can be seen

by turning (1.3.12) using integration against a fundamental class into the non-degenerate pairing

H)(T,M)®p H/(T', M’) — Ho(I', A, M @ M").

1.4 Finitely generated groups

We explained that the first ingredient to define a character variety is a target Lie group. Now, it
is time to talk about the second ingredient: a finitely generated group I'. In most examples and
applications, I' will even be finitely presented. Finitely generated groups are always equipped with
the discrete topology. In practice, it is often desirable to restrict to a particular class of finitely

generated groups in order to obtain more precise statements. Typically, our favourite example of
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finitely presented groups are fundamental groups of oriented surfaces. These are traditionally called

surface groups.

1.4.1 Surface groups

Definition 1.4.1 (Surface groups). Let g = 0 and n > 0 be two integers. A group is called a

surface group if it is abstractly isomorphic to

g n
Tgn i= <a1,b1,...,ag,bg,cl,...,cn : H[ai,bi] = ch>, (1.4.1)
j=1

i=1

where [a;, b;] = aibiaflbfl denotes the commutator of a; and b;. If n = 0, then it is called a closed

surface group.

In particular, all free groups are surface groups since 7, , is isomorphic to the free group on
2g +n — 1 generators whenever n > 1. Surface groups are almost never abelian as for instance 7 o
is non-abelian for g > 2. The generators ¢; in (1.4.1) will play a central role later in Section 5.3
in the context of relative representation varieties. The name “surface group” is explained by the

following lemma.

Lemma 1.4.2. Let 3,, denote a connected orientable topological surface of genus g = 0, with

n = 0 punctures. The fundamental group of ¥4, is isomorphic to mg .

Proof. The proof for the case n = 0 is explained in [Labl3, Thm. 2.3.15]. Its generalization to
punctured surfaces can be understood in two steps. First, observe that a sphere with n > 1
punctures is homotopy equivalent to the wedge of n — 1 circles. Hence, its fundamental group is
the free group on n — 1 generators. Similarly, a surface of genus g with one puncture is homotopy
equivalent to the wedge of 2¢ circles. Thus, its fundamental group is the free group on 2¢g generators.
Now, note that 3, ,, is the union of two sub-surfaces ¥, 1 and g ,+1. The conclusion now follows

from Van Kampen’s Theorem.
O

We denote by ig,n the surface with boundary obtained from X, by replacing each puncture
by a boundary component. We also write 0w, ,, to denote the collection of 1-parameter subgroups
of 74, generated by ci,...,c,. With this notation in mind, we deduce from Lemma 1.4.2 that
(ig,n, 8ig,n) is an Eilenberg-MacLane pair of type K (mg n, 0mg.n, 1) in the sense of Definition 1.3.7.
We can thus compute the group (co)homology of 74 ., relative to 0wy, from the (co)homology of
the pair (3., 8%,.,) using Theorem 1.3.8. This shows for instance that the closed surface groups
Tg,0 are pairwise non-isomorphic because their cohomology with real coefficients differs in degree
1. It also shows that 7, ¢ is non-free for g > 1 since its homology differs from the homology of free

groups computed in Example 1.3.4.

1.4.2 Fundamental class

It will be useful later to have an explicit fundamental class, in the sense of Definition 1.3.17, for

the pair (mgn,0my ) expressed in the relative bar complex. Recall from Example 1.3.18 that a
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Figure 1.1: Illustration of a collection of generators of the fundamental group of a punctured surface:
Two generators for each genus and one for each puncture. These are related by a single relation,
namely that of (1.4.1).

fundamental class for the pair (7, 07y ) is a generator of Ha(mg r,, 07y pn, Z) = Z, where Z is the
trivial m, ,-module. For every i =1,..., g, we consider the following 2-chains inside Cs(mg pn,Z) =

L mgn X Tgnl:

X = (H[aj,bj],ai> . Y= (H[aj,bj]ahbi) )

Jj<i Jj<i
zi = (H[aj,bj]aibi,a;1> . Wy = (H[aj7bj]aibia;l,b;1> .
Jj<i Jj<i

When we differentiate the sum z; + y; + 2; + w; using (1.3.1), we obtain

62(@ + Yy + 2 +wi) =a; + a[l +b; + b;l + H[ai,bi] — H [ai,bi].

j<i j<i+l

-1
i

So, if we further introduce &; = (a;,a; ) + (b, b; ') 4+ 2(1,1), then we can compute dae; = a; +

ai_1 + b; —i—bi_1 and thus

[ai, bz]

g
1

g
02 (Zmi+yi+zi+wi—si> =1-

=1 7

Similarly, the 2-chain v € Ca(my,) = Z[7y n X 7y ] defined by
vi=(c1,c2) + (c1c2,¢3) + ...+ (c1- - cno1,0n) + (1,1)

satisfies 0oy = ¢1 + -+ 4+ ¢ — ¢1 -+ - ¢, + 1. Recalling from (1.4.1) that ¢1 -+ ¢, = [[9_,[as, b;], we

obtain
g n
02 (V—in‘l'yri-zri-wi—&) = Zci-
i=1

i=1
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From here, using (1.3.7), we can easily that the relative 2-chain

9
<’y - Z T+ Yy + 2 +w; — e, (e1, .., cn)) € Co(Tg,n, 0Tgn, L) = L[Tgpn X Tgn] ® Z[0Tg n]
i=1

(1.4.2)
is closed. Its homology class will be denoted by [7g 1, 07 n] € Ha(mgn, 0mg n, Z). This notation is
justified by the following lemma.

Lemma 1.4.3. The homology class [mgrn,0mg ] is o fundamental class for the pair (mg n, 0mgp).

Proof. Recall that we defined 0w, ,, as the collection of 1-parameter subgroups of 7, generated
by ¢1,...,¢n. The subgroup generated by ¢; will be denoted by 0;7, ,, and its inclusion inside 7y ,,
by 2;: 0;mg.n <> Tgn. The long exact sequence (1.3.9) in group homology for the pair (7, 07 )

contains the subsequence
.= Hy(myn, Z) — Ha(Tym, 07y n,Z) —> Hi(0myn,Z) Dy Hy(mgpn,Z) —> ...

Since Ho(mg.n, Z) = 0, the connecting morphism r is injective and Ker @®; = Ha (g p, 0mg n, L) = Z.
Recall from Section 1.3.5 that r comes from the restriction on the chain complex level. This means
that r([7g,n, 0mg.n]) = [(c1, ..., cn)] € H1(0mg n, Z). Alsorecall that Hy(0my n,Z) = @B, H1(0i7g.n, Z).
By definition of the relative bar complex, H1(0;7mg pn,Z) = Z[0;7gn]/(g + h — gh). Since 0,7 ., is

the 1-parameter subgroup of m,, generated by ¢;, we conclude that Hy(0;myn,Z) = Z and that
under this identification 7([7g ,, 07y n]) = (1,...,1) € Z™.

Similarly, we observe that Hi(mgn,Z) = Z[mgnl/(9 + b — gh) which gives Hy(mgn,Z) =
729771 Under these identifications, the morphism @z;: Z™ — Z29t" "1 is the map (a1, ..., a,) —
0,...,0,a1 — an,...,an—1 — ay). We conclude that the isomorphism r: Ho(mg p, 0Ty n,Z) —
Ker @1;, seen as a map Z — Z", is a — (a,...,a). This shows that r([mgn, 07y ,]) is a gener-

ator of Ker @;, from which we deduce that [y, 07y 5] is a fundamental class. O]

Lemma 1.4.3 holds true for any g > 0 and any n # 0. For instance, when n = 0 we obtain a
fundamental class for closed surface groups [mg,0] € Ha(7g,0,Z) given by the homology class of the
2-chain Zle T; +y; +2; +w; —e;. Also, the case g = 0 corresponds to the case of punctured spheres
and the fundamental class [7g,n, 0m0.n] € Ha(mg,0,Z) is given by the homology class of the 2-chain
(v, (c1,...,¢n)). Similar computations of fundamental classes can be found in [Gol84, Sec. 3] in
the case n = 0 and in [GHIJW97, Sec. 2| for the general case, see also [GR98] for an account of all

cases.
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Chapter 2

Representation varieties

Overview

Before introducing character varieties, we will first study representation varieties. In short, a
representation variety is an analytic, sometimes algebraic, object associated to a finitely generated
group I' and a Lie group G. It consists of all group homomorphisms from I' to G. We will explain
where the analytic and algebraic structures of representation varieties come from in Section 2.1
and some of their basic symmetries in Section 2.2. Further down in Section 2.3, we will discuss
the tangent spaces to representation varieties, as well as their smooth points the case where I is a

surface groups in Section 2.4.

2.1 Definition

Definition 2.1.1 (Representation variety). The representation variety associated to a finitely
generated group I' and a Lie group G is the set of group homomorphisms from I' to G and is
denoted by

Hom(T', G).

The elements ¢ € Hom(T", G) are called representations.

The topology on the representation variety Hom(T', G) is defined to be the subspace topology
induced by the compact-open topology on the space G' of all (necessarily continuous) functions
I’ > G. The resulting topology on Hom(I', G) can also be described using a system of generators

as follows. For any set of generators (y1,...,7v,) of I, we introduce the subspace

X(T,G) = {((Z)(’yl), e gb('yn)) : ¢ € Hom(T, G)} c G"™.

Lemma 2.1.2. Let G be a Lie group equipped with an analytic atlas. The set X(I',G) is an
analytic subvariety’ of G™ and is homeomorphic to Hom(I',G). In particular, Hom(T,G) has a
natural structure of analytic variety and the structure does not depend on the choice of generators
of T.

LAn analytic variety is understood to be the zero locus of a set of analytic functions over R or C.
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Proof. Let R = {r;} denote a (maybe infinite) set of relations for the generators 71, ...,v,. Each
relation r; defines an analytic map r;: G — G because multiplication and inverse are assumed to
be analytic operations on G. The map r; is called a word map. The set X(T',G) is the analytic
subset of G™ cut out by the relations r;(g1,...,9n) = 1 for every i.

Since a group homomorphism ¢: I' — G is determined by the images of a set of generators of

T', the map

II: Hom(I',G) - X(T', G)
Qs = (¢(’71)7 ) ¢(’7n))

is a bijection. We prove that II is a homeomorphism. Recall that all the sets
V(K,U)={f:T—> G:KcT finite, U ¢ G open, f(K)c U}

form a sub-basis for the compact-open topology on Hom(I', G). To see that II is a continuous map,
observe that, for a collection of open sets Uy,...,U, c G,
n

I (X(T,G) A Uy x ... x Uy) = Hom(I,G) n [ V({ri}, Us).

i=1

To prove that the inverse map II™! is also continuous, note that any element k € I, seen as a word
in the generators ~1,...,7v,, determines an analytic function k: G™ — G. Now, given a finite set

K c T and an open set U c GG, we have

I (Hom(T,G) n V(K,U)) = X(T,G) n [ ] kH(U).
keK
We conclude that both II and its inverse are continuous. Hence, II is a homeomorphism.

If (4,...,7,,) is another set of generators of I' and X'(I', G) is the associated space, then the
map from X(T', @) to X’(T', G) defined as the composition

X(T',G) » Hom(T',G) —» X'(T', G)

is an isomorphism of analytic varieties. Indeed, the map sends (¢(fyl), ol qb('yn)) to (cﬁ(fy{), ce qb(vjl,)).
Now, since 7} is a word in the generators 1, . . ., Jn, it follows that ¢(v}) is a word in ¢(v1), - . ., ¢(n)-

This shows that the map is analytic because word maps are analytic by assumption on G. O

Lemma 2.1.3. Assume that G has the structure of a real or complex algebraic group, then X (T, G)
is an algebraic subset of G™. In particular, Hom(I', G) has a natural structure of real or complex

algebraic variety and the structure does not depend on the choice of generators of I'.

Proof. The argument is analogous to the proof of Lemma 2.1.2. The key observation is that the

relations R = {r;} give regular maps r;: G — G by assumption on G. O

Remark 2.1.4 (Finitely generated versus finitely presented). Since we assumed T' to be finitely
generated, and not finitely presented, the set of equations that define X (I', G) might be infinite.
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However, Hilbert’s basis theorem implies that any algebraic variety over a field can be described as

the zero locus of finitely many polynomial equations, see e.g. [SKKT00, §2.2].
Remark 2.1.5 (Standard topology versus Zariski topology). If G is a real or complex algebraic

group, then it is also a Lie group, as mentioned earlier. This means that the representation variety
Hom(T', G) has both the structure of an analytic variety and of an algebraic variety. The underlying
topology of the analytic structure is called the standard topology and that of the algebraic structure
the Zariski topology. The standard topology on an algebraic variety is always Hausdorff. The
Zariski topology is coarser than the standard topology. Indeed, Zariski open sets are open in the
standard topology because polynomials are continuous functions. A nonempty Zarsiki open set is

also dense in both the standard and the Zariski topology.

Example 2.1.6. One occasion where one may encounter representations of finitely generated
groups into Lie groups in the nature is by studying (G, X) structures. This is because the holon-
omy of a (G, X) structure on a surface X, is a morphism mX,, — G. Not all the represen-
tations m X4, — G are holonomies of (G, X) structures on X, ,. However, if n = 0, then the
set of holonomies is an open subset of Hom(m X, ,G) [Gol21, Cor. 7.2.2]. In the case where
G = PSL(2,R) and X = H, then the holonomies of (PSL(2,R), H) structures (commonly known
as hyperbolic structures) on a closed surface X, ¢ with g > 2 are precisely the discrete and faith-
ful representations of Hom(m 2,0, PSL(2,R)). It is interesting to note that holonomies of (G, X)
structures is only well-defined up to conjugation by an element of G, foreshadowing the notion of
character varieties. For more information on (G, X) structures, the reader may consult Goldman’s
book [Gol21].

In the vocabulary of category theory, we can say that a representation variety is a bifunctor
from the product of the category of finitely generated groups and the category of Lie/algebraic
groups to the category of analytic/algebraic varieties. This is a consequence of Lemmata 2.1.2 and
2.1.3, and of the following.

Lemma 2.1.7. Let T be a finitely generated group and G be a Lie/algebraic group.

1. If7: Ty - Ty is a morphism of finitely generated groups, then the induced map 7*: Hom(T's, G) —
Hom(T'1, G) is an analytic/regular map.

2. If r: Gy — G2 is a morphism of Lie groups or of algebraic groups, then the induced map

ry: Hom(T',G1) — Hom(T', G2) is an analytic map or a regular map, respectively.

Proof. The second assertion is immediate. To prove the first statement, note that if (71,...,v}) is
a set of generators for I'y and (72,...,72,) is a set of generators for I'y, then (7*¢)(v}) = ¢(7(v}))

is a word in ¢(7%),...,¢(v2). Word maps are analytic, respectively regular, and thus so is 7%. [

2.2 Symmetries

The representation variety Hom(I', G) has two natural symmetries given by the right action of
the group Aut(I') of automorphisms of I" by pre-composition and the left action of Aut(G) by
post-composition:

Aut(G) & Hom(T,G) © Aut(T).

29



An immediate consequence of Lemma 2.1.7 is

Lemma 2.2.1. The actions of the groups Aut(I') and Aut(G) on Hom(I',G) preserve its ana-

lytic/algebraic structure.

There is a normal subgroup of Aut(G) that is of particular interest: namely, the subgroup
of inner automorphisms of G, denoted Inn(G). Recall that an inner automorphism of G is an
automorphism given by conjugation by a fixed element of G. In particular, Inn(G) = G/Z(G),
where Z(G) denotes the centre of G that we introduced in Section 1.1.

Remark 2.2.2. We want to point out that if G is semisimple, then Inn(G) is a finite index subgroup
of Aut(G). This can be seen as follows. First, assume that G is also simply connected. In
that case, the map Aut(G) — Aut(g) induced by derivation is an isomorphism of Lie groups, see
e.g. [Ser06, Part II, Chap. V, §8, Thm. 1]. So, it is sufficient to prove the statement on the level
of Lie algebras. If g is semisimple, then the Lie algebras of Inn(g) and Aut(g) are isomorphic, see
e.g. [HN12, Thm. 5.5.14]. Hence, Inn(g) is a finite index subgroup of Aut(g), and the same holds
for Inn(G) and Aut(G). If G is not simply connected, then one considers the simply connected
cover G of G (see [HN12, Thm. §9.5]). Because of lifting properties, there is an injective map
Aut(@)/Inn(G) — Aut(G)/Inn(G). This concludes the argument.

The action of Inn(G) on Hom(T',G) is relevant in many concrete cases. For instance, the
holonomy representations mentioned in Example 2.1.6 are really defined up to conjugation by an

element of G and so it makes sense to see them as elements of the quotient
Hom(T', G)/Inn(G). (2.2.1)

The quotient (2.2.1) is our first prototype of character variety for the pair (T, G).
The action of Aut(I") on the representation variety descends to an action of Aut(I")/Inn(T") on
the quotient (2.2.1). The group Aut(I')/Inn(T") is denoted Out(I') and is called the group of outer

automorphisms of T'.

Example 2.2.3. The group of outer automorphisms of the surface group m %, , has a particular
significance. It contains the pure mapping class group of the surface X, ,, as a subgroup. This is

known as the Dehn—Nielsen-Baer Theorem. We develop this observation further in Section 7.2.

2.3 Tangent spaces

In this section, we would like to determine the tangent spaces to representation varieties. Since
representation varieties are not smooth manifold in general, but only analytic varieties, we need
a notion of tangent spaces that fits our setting. We could try to work with the notion of Zariski
tangent spaces for analytic varieties. Recall that when X < R” is an analytic variety defined as the
zero locus of finitely many analytic functions fi,..., f;: R®™ — R, then its Zariski tangent space

at x € X is the kernel of the m x n Jacobi matrix

(‘%’(xoz . (2.3.1)

635]-

N
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It’s worth observing that the Zariski tangent space at x contains all the vectors z’(0) tangent to
a smooth path z(t) inside R™ with 2(0) = = and satisfying the relations f; = 0 up to first order
for every ¢ = 1,...,m, by which we mean that f;(z(0)) = 0 and %L:O fi(z(t)) = 0. However, it
is not true in general that every vector in the Zariski tangent space at z is tangent to a smooth
deformation of x as above. For instance, when X c R is the analytic variety defined as the zero
locus of the function f(z) = 22, then X consists of a single point at which the Zariski tangent space
is one dimensional. There are also examples where X is a representation variety and the Zariski
tangent space at isolated representations (aka. rigid representations) has positive dimension, such
as the one described in [Mar22, Sec. 4.2.4].

Even if representation varieties are analytic varieties cut out by finitely many equations as we
explained in Lemma 2.1.2, in order to get finitely many equations, one has to choose a system of
generators for I'. As we prefer to avoid picking a system of generators for I', we will use the notion
of Zariski tangent spaces for ringed spaces instead of that for analytic varieties. This will allow us
to talk about Zariski tangent spaces for analytic sub-varieties of the infinite product G''. This is

the approach followed by Karshon in [Kar92] and by Lawton in [Law09].

Definition 2.3.1 (Real valued ringed space). A real valued ringed space is a topological space X
with a sheaf R of real valued functions called admissible functions. Most of the time, we will use
smooth functions instead of admissible functions. The Zariski tangent space to X at x is the vector

space (M, /M?2)*, where M, denotes the germs of admissible functions at x that vanish at z.

Examples of real valued ringed spaces include smooth manifolds together with the sheaf of
smooth real valued functions, analytic varieties together with the sheaf of analytic functions or
algebraic varieties together with the sheaf of regular maps. Zariski tangent spaces for real valued
ringed spaces generalize the notion of tangent spaces for manifolds and that of Zariski tangent
spaces for analytic and algebraic varieties.

We start by describing a sheaf of admissible functions for GT'. We will call a function GI' — R
locally smooth if it is locally a smooth function of a finite number of coordinates. In other words,
we are defining the sheaf C*(G') of locally smooth functions on G' as the direct limit of the
sheaves C*(G') of smooth functions on the manifold G!, where I < T’ is a finite set. The space
G, together with the sheaf C*(G") defined above, is a real valued ringed space in the sense of
Definition 2.3.1.

Lemma 2.3.2. The Zariski tangent space to G'' at any point identifies with g'.

Proof. In this case, the Zariski tangent to space to G' at f can be identified with the vector space
of all tangents to smooth deformations of f. An isomorphism between TyG" and g' can then be
defined as follows. Given u € g'', consider the 1-parameter family of maps exp(tu)f which defines a
deformation of f inside GT. Here exp: g — G denotes the Lie exponential map. For more details,
the reader may consult [Kar92, Sec. 2.3] or [Law09, Sec. 3.2]. O

The representation variety Hom(I', G) is the closed subspace of G'' cut out by the equations

Foy(f) = flay)fy) " f(@)™" =1, Va,yel.
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We define a sheaf of smooth functions on Hom(T', G) as follows. If U = G is an open subset, then
we associate to the open subset U n Hom(I', G) of Hom(I', G) the quotient ring C*(U)/(p o Fy y :
x,y € I'), where ¢: G — R is any smooth function with ¢(1) = 0 and C*(U) comes from the sheaf
of smooth functions on G''. This equips Hom(T', G) with the structure of a ringed space.
Previously, in the context of Lemma 2.1.2, we explained that Hom(T', G) inherits its structure
from the embedding inside G™ that depends on a choice of generators for I'. In contrast, the

embedding Hom(T', G) = G does not require to fix a set of generators for T

Lemma 2.3.3 ([Kar92]). Fiz a set of n generators of I' and let F,, be the free group on n generators.

The following diagram is a commutative diagram of real valued ringed spaces.

/

an
Hom(T', G) \ G

~ " 7

In particular, the structures induced by G™ and GT' on Hom(T', G) coincide.

We refer the reader to [Kar92] for a proof of Lemma 2.3.3. Observe that the inclusion Hom(T', G)
G" of ringed spaces induces an inclusion of their Zariski tangent spaces T, Hom(I',G) < g''. We
want now to determine the Zariski tangent space Ty Hom(I', G). It follows from the definition of
the ringed space structure on Hom(I', G) that the Zariski tangent space T, Hom(T', G) is the inter-
section of the kernels of the linear forms Dy F}, ,: g" — g for all 2,y € T (each tangent space to G

is naturally identified to g via left translation).

Lemma 2.3.4. It holds that

Dy Fyy(v) = v(zy) — v(z) — Ad((z))v(y)
forvegl and ¢ € Hom(T',G).
Proof. By definition, we have that

d

DyFry(v) = — L Fy y(exp(tv)¢)
=l exp(tv(wy))p(zy)d(y) " exp(—to(y))d(z) " exp(—tv(w))
= v(zy) — v(z) — Ad((2))v(y).
Here exp: g — G denotes the Lie exponential map. O

Corollary 2.3.5 ([Gol84], [Kar92]). The Zariski tangent space to Hom(I', G) at ¢ is

Ty Hom(T,G) = {veg" :v(zy) = v(z) + Ad(¢(z))v(y), Vz,yel}.
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Corollary 2.3.5 can be reformulated in terms of group cohomology.? A representation ¢ €

Hom(T', G) equips g with the structure of a I'module by
r -2 G 2% Aut(g).

The resulting I'-module is denoted by g4. The set of 1-cochains in the bar complex that computes
the cohomology of T' with coefficients in g, is C1(I', g4) = g*' = TyGT, see Section 1.3.2 for more

details on the bar complex. The space of 1-cocycles is
Z'(T,89) = {veg" : v(zy) = v(z) + Ad(¢(2))o(y), Va,yeT}
and thus identifies with Ty Hom(T', G). The space of 1-coboundaries, defined by
B'(T,g4) ={veg :3eg, v(z)=¢—Adg(2)E¢, Vrel},

also plays a role in this context. They can be identified with the Zarisiki tangent space to the
Inn(G)-orbit of ¢ € Hom(T', G) at ¢ (recall from Section 2.2 that Inn(G) acts on the representation
variety by post-composition). We denote this orbit by

04 < Hom(T', G).
Proposition 2.3.6 ([Gol84], [Kar92]). The Zariski tangent space to Oy at ¢ is

TsO0p ={veg' :3eg, v(z)=¢—Ad(p(z))E, VrxeTl}
= BY(T, g4).

Proof. The orbit Oy is a smooth manifold isomorphic to the quotient of G by the stabilizer of ¢
for the conjugation action. The stabilizer of ¢ is the centralizer Z(¢) = Z(4(T")) of ¢(T') inside G,
which is a closed subgroup of G. In particular, the Zariski tangent space to Oy at ¢ coincides with
the usual notion of tangent space.

A smooth deformation of ¢ inside O is of the form ¢; = g(t)¢pg(t) ™!, where g(t) is a smooth
1-parameter family inside G with g(0) = 1. The tangent vector to ¢; at t = 0 is the coboundary
v(z) = £ — Ad(¢(x))€ where € € g is the tangent vector to g(t) at t = 0. Conversely, for any £ € g,
the coboundary v(z) = £ — Ad(¢(x))¢ is tangent to exp(t&)pexp(—t€) at t = 0. O

The combination of Lemma 2.3.2, Corollary 2.3.5, and Proposition 2.3.6 show that the inclusions

of ringed spaces
04 < Hom(T,G) € G*

2An introduction to group (co)homology, containing all the relevant notions for this work, is provided in Sec-
tion 1.3.
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induces a chain of inclusions on the level of Zariski tangent spaces.

T¢O¢ > T¢ HOIII(F7G) > T¢GF

E E E

BY,g4) — Z'(T,gy) — C* (T, g4)

Observe that B!(T, g,) can be identified with the quotient g/3(¢), where 3(¢) is the Lie algebra of
Z(¢). In particular, it holds that

dim BY(T', gy) = dim Oy = dim G — dim Z(¢). (2.3.2)

Example 2.3.7 (Surface groups). In the special case where I' is a closed surface group (Defini-
tion 1.4.1), one can obtain the conclusion of Corollary 2.3.5 from the embedding Hom(r, ¢, G) € G*9
coming from the presentation of 7, ¢ given in (1.4.1). Let ¢ € Hom(m, 0, G) and let A; = ¢(a;) and
B, := ¢(b;), where a; and b; are the generators of 7y ¢ from (1.4.1). The Zariski tangent space to

Hom(mg 0, G) at ¢ is isomorphic to the kernel of the differential of the relation map

F:G¥Y - @
g
(X1, X, Y, Yy) - [ 16, Y] (2.3.3)
i=1
at (Ai,...,Ag, B1,...,Bgy). A simple computation shows that the kernel of D4, g, " corresponds
to the subset of g29 that consists of all those (a1, ...,a,,B1,...,B,) such that the following expres-

sion vanishes:

(a1 + Ad(Al)ﬂl) —Ad ([Alv Bl]) (51 + Ad(Bl)Oll)
+ Ad ([1417 Bl]) (042 + Ad(Ag),@g) — Ad ([Al, Egl][Ag7 BQ]) (ﬁg + Ad(BQ)OéQ)

+...
9 i—1 i
=) Ad (H[Aj, Bj]) (a; + Ad(4;)8;) — Ad (H[Aj, Bj]> (B: + Ad(By) ;). (2.3.4)

Similar computations can be found in [Lab13, Prop. 5.3.12]. Once again, we identified Ty,G = g
and Tp,G = g via left translation.

To see the correspondence between this description of the Zariski tangent space and that of
Corollary 2.3.5, we proceed as follows. First, if one defines v: m,0 — g by v(a;) = «; and
v(b;) := B, for some tuple (av,...,aq,01,...,0,) that satisfy (2.3.4), and extend v to all of 74 ¢ by
v(zy) = v(z) + Ad(é(z))v(y), then v defines an element of Z'(m, 0,84). To prove it, it is sufficient
to check that v([[[as,b;]) = 0. If one develops v([][a;,b;]) using v(zy) = v(z) + Ad(¢(z))v(y)
and v([z,y]) = v(zy) — Ad(¢([z,y]))v(yx), then one gets that v([][a;,b;]) = 0 is equivalent
to (2.3.4) vanishing. Conversely, given v € Z'(my0,94), then (v(a1),...,v(aq),v(b1),...,v(by))

satisfies (2.3.4) by the same argument as above.
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2.4 Smooth points

Smooth points of analytic varieties in R™ are defined as follows.

Definition 2.4.1 (Smooth points). A point = of an analytic variety X < R" is a smooth point if
there is an open neighbourhood U c X of x such that U is an embedded submanifold of R™.

Using the Implicit Function Theorem, we can reformulate the condition and say that x is a
smooth point of X if and only if the rank of the Jacobi matrix (2.3.1) at x is maximal. By the
Rank-Nullity Theorem, this happens if and only if the dimension of the Zariski tangent space to X
at x is minimal. If every point of an analytic variety is smooth, then it is an analytic manifold.

In the context of representation varieties, we will use the characterization of smooth points as
the ones that minimize the dimension of the Zariski tangent space. For instance, if ' is a free
group, then Hom(T',G) is an analytic manifold because of the absence of relations (recall from

Lemma 2.1.2 that representation varieties are analytic varieties).
Lemma 2.4.2. The set of smooth points of Hom(T', G) is invariant under the Inn(G)-action.

Proof. The action of G on itself by conjugation is analytic. Therefore, it preserves smooth neigh-

bourhoods of points inside Hom(I", G). We can give an alternative argument by observing that the

1

Zariski tangent spaces at ¢ and g¢g~" are isomorphic as I'-modules, hence have the same dimension.

The isomorphism is given by

ZHT,89) = Z1 (T, ggpg-1)
v — Ad(g)v. O

2.4.1 Surface groups

It is hard to formulate a statement about smooth points of representation varieties for an arbitrary
finitely generated group I'. However, when I' = 7, ¢ is a closed surface group and G is quadrable,

it is possible to describe the smooth points of the representation variety explicitly.

Proposition 2.4.3 ([Gol84]). Let G be a quadrable Lie group. The dimension of the Zarisiki

tangent space to Hom(my 0, G) at ¢ is
dim Z' (74,0, 84) = (29 — 1) dim G + dim Z().
In particular, all the representations ¢ with®
dim Z(G) = dim Z(¢),

where Z(G) denotes the centre of G and Z(¢) is the centralizer of ¢(mg ) inside G, minimize the

dimension of their Zariski tangent space.

Proof. We compute the dimension of the Zariski tangent space to Hom(m, o, G) at ¢. We use the
identification with Z'(m, 0, g,) provided by Corollary 2.3.5. Recall that the group cohomology of

3Compare with Section 3.1.
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mg,0 With coefficients in g4 is isomorphic to the de Rham cohomology of the surface ¥, with
coefficients in the flat vector bundle Ey4 associated to g4 (i.e. the adjoint bundle of the principal

~

G-bundle (X4 x G)/mg0 built from ¢, see [Gol84] for more details):

H*(m40,08¢) = Hip(Xg0,Eg).

In particular, it vanishes in degrees larger than 2.

The Euler characteristic
dim H (g0, 90) — dim H' (7.0, 8¢) + dim H (7.0, 94) (2.4.1)

is independent of ¢. Indeed, since the spaces of cochains in simplicial cohomology with local
coefficients are finite-dimensional in every degree, the quantity (2.4.1) can be expressed as the
alternating sum of the dimensions of the spaces of cochains. The latter is independent of ¢, because
the structure of m, o-module of g, only intervenes in the differential, see the definition of the bar
resolution (1.3.2). If ¢ is the trivial representation, then gy is the trivial 7, o-module and (2.4.1) is

equal to the Euler characteristic of 3 ¢ times the dimension of G. We conclude
dim H' (7,0, 8¢) = (29 — 2) dim G + dim H’(mg.0, g4) + dim H?(mg 0, g¢)-

Poincaré duality (see Section 1.3.8) implies H?(7.0,g4) = Ho(ﬂ'g)o,g;)*. The existence of a non-
degenerate, Ad-invariant, symmetric, bilinear form on g implies that g4 = g;") as g 0-modules.
Hence, dim H%(7,0,84) = dim H?(my0,94). It is easy to see that H°(m,0,94) is the space of
Ad(¢)-invariant elements of g, namely 3(¢). Hence

dim H' (7.0, 9¢) = (29 — 2) dim G + 2dim Z(¢).

Recall from (2.3.2) that the dimension of B'(7,,0,gs) is equal to dim G — dim Z(¢). Finally, we
obtain
dim Z' (740, 04) = (29 — 1) dim G + dim Z(¢).

Since Z(G) < Z(¢), it holds that dim Z(G) < dim Z(¢), and we conclude that ¢ minimizes the
dimension of its Zariski tangent space if and only if dim Z(G) = dim Z(¢). O

We can alternatively study the smooth points of Hom(my 0, G) by looking for all the representa-
tions ¢ at which the relation map (2.3.3) is a submersion. We will assume here that G has discrete
centre, i.e. dim Z(G) = 0. This is a necessary assumption in order to allow for dim Z(¢) = 0 for

some representations ¢.

Proposition 2.4.4. Let G be a quadrable Lie group with dim Z(G) = 0. The differential of the
relation map (2.3.3) is surjective at every representation ¢ € Hom(my 0, G) with dim Z(¢) =0 is a

submersion. In particular, all such ¢ are smooth points of Hom(m, o, G).

Proof. The argument we are about to present can be found in [Labl3, Prop. 5.3.12]. Instead of
relying on the embedding G', we will use the embedding Hom(m, 0, G) € G?9 coming from the

presentation (1.4.1).
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The map p: g2 — g is defined by differentiating (2.3.4) at (Ai,..., A4y, Bi,..., B,) and identi-

fying all tangent spaces with g. A simple computation leads to

g
/j/(al7"'7ag7ﬁla"'aﬂq Z (HAd ) (al_Ad(AszA;l)a’L)

j<i

_ Z (H Ad ( > (Bi — Ad(B; A; B; ) 8;).

J<i

We let V' be the orthogonal complement of the image of 4 in g with respect to the Ad-invariant
pairing B coming from the quadrability of G. We will prove that V is equal to the Lie algebra 3(¢)

of Z(¢).
First, observe that the orthogonal complement of 3(g)—the Lie algebra of Z(g)—is equal to the

image of the map g — g given by ¢ — & — Ad(g)¢. Also recall that Z(ghg™') = gZ(h)g~! for any
g,h € G. This shows that V must contain the Lie algebra of

H:= ﬂ [TAd([4;,Bj]) (Z(A:iBiATY) o Z(A;i BiAi BT P ATY),

i=17<1

where we used that [A;, Bi]BiAiBi_l[Ai, Bt = AiBiAiBi_lAi_l. We can see that

H= ﬂ [TAd ([4;, Bj]) Ad(A;B) (Z(B;) 0 Z(Ay))

i=1j<1

Now, since Ad(A;B;)(Z(B;) n Z(A;)) = Z(B;) n Z(A;), we can write H as

M TTAd (145, Bi1) (Z(B:) n Z(A)).

i=1j<i

So, if h € H, then in particular h € Z(A1) n Z(By) and h € Ad([A1, B1])(Z(A2) n Z(B3)). We
conclude that h € Z(A1) n Z(B1) n Z(Az) n Z(Bz2). Repeating this argument, we obtain that
H =/, )N Z(B;) = Z(¢) and so 3(¢) < V. The reverse inclusion is obvious. This shows
that u is surjectlve whenever 3(¢) = {0}, or equivalently dim Z(¢) = 0.

We can also recover the dimension count from Proposition 5.3.6 (we do not require the hypothesis
dim Z(G) = 0 for this step). We use the Rank-Nullity Theorem to compute the dimension of the

Zariski tangent space at the representation ¢ as

dim 7" (m, 0, 9) = dim Ker(y)
= 2¢gdim G — dim Im(u)
= (29 — 1) dim G + dim Im(u)*
= (2g —1)dim G + dim Z(¢). O

Proposition 2.4.3 applies to closed surface groups. In Proposition 5.3.6 below, we will discuss

an analogous description of smooth points for fundamental groups of punctured surfaces.
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Chapter 3

The conjugation action

Overview

This chapter is an elaboration on the action of Inn(G) on Hom(I', G) by post-composition which was
introduced in Section 2.2. It is quite common to refer to this action as the the conjugation action of
G on the representation variety. We will try to determine when the action is free in Section 3.1 and
when it is proper in Section 3.2. This will lead us to the notions of (very) regular representations,
as well as irreducible and reductive representations. In the last two sections (Sections 3.3 and 3.4),

we will present Procesi’s results on invariant functions and introduce the dual notion of characters.

3.1 Freeness

The action of Inn(G) = G/Z(G) on Hom(T',G) is never free, since the trivial representation is
always a global fixed point. It is easy to see that the stabilizer of a representation ¢ € Hom(I", G)
is Z(¢)/Z(G). In particular

Lemma 3.1.1. The Inn(G)-action is free on the Inn(G)-invariant subset that consists of all the

representations ¢ such that

There is a neat characterization of the points where the action is locally free. Recall that the
action of a topological group on a set X is locally free at x € X if the stabilizer of x is discrete. We
will stick the notation introduced previously and write Oy for the Inn(G)-orbit of a representation
¢ € Hom(T', G).

Proposition 3.1.2 ([Gol84]). The action of Inn(G) on Hom(T', G) is locally free at ¢ if and only
if

dim Z(G) = dim Z(¢).
Proof. The action of Inn(G) on Hom(I', G) induces, for any representation ¢, a surjective linear

map Jnn(G) — TyOy, where Inn(G) denotes the Lie algebra of Inn(G) and O the Inn(G)-orbit of
¢. The map is given by

d
€ | (i)
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Observe that the action of Inn(G) on Hom(T', G) is locally free at ¢ if and only if the induced map
Jw(G) — T4Oy is injective. Since the map is always surjective, this is equivalent to asking that
both spaces Jnn(G) and T,O, have the same dimension. The dimension of Jnn(G) is dim G —
dim Z(G) and the dimension of T4y is dim G — dim Z(¢), as computed in (2.3.2). Hence, the
dimensions coincide if and only if dim Z(G) = dim Z(¢). O

Remark 3.1.3 (Freeness and smooth points). It is striking that the condition of Proposition 3.1.2
to guarantee that the conjugation action is locally free coincides with that of Propositions 2.4.3
and 2.4.4. In other words, the smooth points of Hom(my,, G) are precisely those where the action
of Inn(G) is locally free.

3.1.1 Regular representations

Proposition 3.1.2 motivates the following definition.

Definition 3.1.4 (Regular representations). A representation ¢ € Hom(T', G) is called regular if
dim Z(G) = dim Z(¢).

We denote by Hom™® (T, G) the Inn(G)-invariant subspace of regular representations. If it further
holds that Z(G) = Z(¢), we say that ¢ is very regular. The Inn(G)-invariant subspace of very

regular representations is denoted by Hom"®8(T", ).

We will see later that if G is a reductive algebraic group in the sense of Definition 1.2.3, then

most representations are regular, see Proposition 3.2.10.

Example 3.1.5. When G = PSL(2,R), the representations ¢: I' — PSL(2,R) that are not reg-
ular are of a particular kind. We use the description of centralizers in PSL(2,R) provided by
Lemma A.2.8 from Appendix A. It tells us that a non-regular representation ¢: I' — PSL(2,R) is

of one of the following kinds:
1. ¢ is the trivial representation.
2. The elements of ¢(I') are rotations around the same point of H and Z(¢) = PSO(2).
3. The elements of ¢(I") fix a common geodesic in H and Z(¢) = R+g.
4. The elements of ¢(I') fix the same point in the boundary of H and Z(¢) = R.

As soon as the image of ¢(T') contains, for instance, two elements of different nature (elliptic,
hyperbolic or parabolic) or two elements of the same nature with different fixed points/geodesics,
then Z(¢) = Z(PSL(2,R)) is trivial and ¢ is regular, actually very regular. In particular, for
G = PSL(2,R), every regular representation is also very regular.

3.2 Properness

The conjugation action of G on Hom(T', G) is in general not proper.
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Example 3.2.1. Consider the case where I' = Z and G = PSL(2,R). Let ¢1: Z — PSL(2,R)
be the representation given by ¢;(1) = par™ in the notation of (A.2.6). Let ¢o denote the trivial
representation. Since the closure of the conjugacy class of any parabolic element of PSL(2,R)

contains the identity, we observe that
¢2 € Oy, N Oy, and  {¢2} = Oy,

So, the orbits Oy, and Oy, cannot be separated by disjoint open sets in the (topological) quotient
Hom(Z,PSL(2,R))/Inn(PSL(2,R)). In particular, the quotient is not Hausdorff and the conjugacy
action of PSL(2,R) on Hom(Z, PSL(2,R)) is not proper.

3.2.1 Irreducible representations

Example 3.2.1 hints at the pathological behaviour of representations whose image lies in a parabolic

subgroup. This is essentially a worst case scenario, as we explain below.

Definition 3.2.2 (Borel and parabolic subgroups). A Borel subgroup of a complex algebraic group
G is a maximal, Zariski closed, solvable connected subgroup of G. A parabolic subgroup of a (real
or complex) algebraic group G is a Zariski closed subgroup of G that contains a Borel subgroup

over C.

By definition, a Borel subgroup of G is automatically a Borel subgroup of G°. Similarly, P is a
parabolic subgroup of G if and only if P° is a parabolic subgroup of G°. If G is connected, then
all parabolic subgroups are connected [Mill7, Cor. 17.49].

Example 3.2.3. Let G = GL(n, C). The subgroup of upper triangular matrices is a Borel subgroup
of G. More generally, the Borel subgroups of GL(n, C) are the ones that preserve a full flag in C*
and the parabolic subgroups are those that preserve a (partial) flag in C™ [Bou05, Chap. VIII, §13].

Definition 3.2.4 (Irreducible representations). Let G be an algebraic group. A representation
¢: I' = G is called irreducible if the image of ¢ does not lie in a proper parabolic subgroup of G.

We denote by Hom™ (I, G) the Inn(G)-invariant subspace of irreducible representations.

Remark 3.2.5. The notion of irreducibility for representations does depend on the underlying field.
There exist representations ¢: I' — G that are irreducible over R, but reducible over C, see Exam-
ple 3.2.24.

Observe that if G = GL(n,C), then ¢ being irreducible in the sense of Definition 3.2.4 is
equivalent to C™ being an irreducible I'-module (i.e. ¢ is an irreducible representation in the classical

sense). This is a consequence of Example 3.2.3.

Example 3.2.6. Let G = SL(2,C). The irreducible representations into SL(2,C) can be charac-

terized in terms of traces as stated by the following lemma.

Lemma 3.2.7. A representation ¢: I' — G is irreducible if and only there exists an element
v € [L,T] €T of the commutator subgroup of T such that Tr(p(7)) # 2.
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A proof of Lemma 3.2.7 can be found in [CS83, Lem. 1.2.1]. The argument relies on the following
observation: if A, B € SL(2,C) are two upper-triangular matrices, then their commutator [A, B] is

upper-triangular and has trace 2 (i.e. upper-triangular with ones on the diagonal).

Definition 3.2.8 (Irreducible subgroups). A subgroup of an algebraic group G is called irreducible

if it is not contained in a proper parabolic subgroup of G.

Definition 3.2.8 is a generalization of the notion of irreducibility of subgroups of SL(2,C) in-
troduced in Section 1.2.2. Observe that a representation ¢: I' — G is irreducible if and only if its
image is an irreducible subgroup of G. The centralizer of an irreducible subgroup in a reductive
group G is a finite extension of Z(G) [Sik12, Prop. 15] (see also [Sik12, Cor. 17]). We obtain the

following lemma.

Lemma 3.2.9. Let G be a reductive algebraic group. Irreducible representations into G are reqular:
Hom™ (I, G) c Hom™(T", G).

It is important to note the following statement.

Proposition 3.2.10. Let G be a reductive algebraic group. The subspace of irreducible representa-
tions Hom™ (T, G) is Zariski open in the representation variety Hom(T', G). Moreover, if I' = Tgn
is a surface group, then Homi”(ﬂgvn,G) is dense in a nonempty set of irreducible components of
Hom(my p, G).

We refer the reader to [Sik12, Prop. 27 & 29] for a proof. Observe nevertheless that the second
part of Proposition 3.2.10 follows from the first assertion and from the existence of at least one
irreducible representation. The main result of this section says that if one restricts to irreducible

representations, then the conjugation action of G becomes proper.

Theorem 3.2.11 ([JM87]). Let G be a reductive algebraic group. The Inn(G)-action on Hom™ (T, G)

1S proper.

We refer the reader to [JM87, Prop. 1.1] and references therein for a proof of Theorem 3.2.11.

3.2.2 Good representations

Following [JM87], we call good all the representations that are simultaneously irreducible and very

regular.

Definition 3.2.12 (Good representations). Let G be an algebraic group. A representation ¢: T' —
G is called good' if it is irreducible and very regular. We denote by Hom®#°Y(T', @) the Inn(G)-

invariant subspace of good representations.

Lemma 3.1.1 implies that the Inn(G)-action on Hom#°4(T, @) is free and by Theorem 3.2.11
it is also proper. It is, however, not clear a priori whether good representations exist. However,

one can prove the following

n [JM87] and [Sik12] a good representation is defined to be a very regular reductive representation (see Defini-
tion 3.2.17). If G is reductive, then their definition is equivalent to ours (see Lemma 3.2.19).
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Lemma 3.2.13 ([JM87]). Let G be a reductive algebraic group. The set of good representations
Hom&°Y(T, G) is Zariski open in the representation variety Hom(T, G).

Lemma 3.2.13 is proven in [JM87, Prop 1.3 & Lem. 1.3]. In general, Hom%°°Y(T, G) might not
be a smooth manifold. However, it is the case for closed surface groups by Proposition 2.4.3. We
conclude from Theorem 3.2.11 and Lemma 3.1.1 that

Corollary 3.2.14. Let G be a reductive algebraic group. Let I' = w4 be a closed surface group.
The space of good representations Hom®° (., G) is an analytic manifold of dimension (2g —
1) dim G + dim Z(G). The Inn(G)-action on Hom8°°Y (., G) is proper and free, and the quotient

Hom®°(, 9, G)/ Inn(G)

is an analytic manifold of dimension (2g — 2)dim G + 2dim Z(G).

Note that the dimension of the quotient in Corollary 3.2.14 is always even. This observation

will be relevant later in Section 5 when we discuss the symplectic nature of character varieties.

3.2.3 Reductive representations

The notion of irreducible representations can be generalized to the notion of reductive representa-

tions, sometimes called completely reducible representations too.

Definition 3.2.15 (Linearly reductive groups). An algebraic group is called linearly reductive if

all its finite-dimensional representations are completely reducible.

Equivalently, over the fields of real or complex numbers, an algebraic group G is linearly reduc-
tive if and only if the algebraic subgroup that consists of the identity component for the Zariski
topology is reductive [Mill7, Cor. 22.43].

Definition 3.2.16 (Completely reducible subgroups). A subgroup of an algebraic group is called

completely reducible if its Zariski closure is linearly reductive.

Definition 3.2.17 (Reductive representations). Let G be an algebraic group. A representation
¢: ' — G is called reductive (or completely reducible) if ¢(I') € G is completely reducible. We

denote by Hom™(I', @) the Inn(G)-invariant subspace of reductive representations.

In particular, a representation ¢: I' — GL(n,C) is reductive if and only if C" is a completely
reducible I'-module (i.e. a direct sum of irreducible I-modules). Equivalently, ¢: I' — GL(n,C) is
reductive if and only if every I'-invariant subspace of C" has a I'-invariant complement.

We defined irreducible representations I' — G to be those whose image is not contained in a
parabolic subgroup of G (Definition 3.2.4). Using the notion of Levi subgroups? of G (see e.g. [Sik12,
§3]), one could also define reductive representations as those representations ¢: I' — G with the
property that if ¢(T") is contained in a parabolic subgroup P of G, then it is actually contained in
a Levi subgroup L c P.

2The reader who wishes to learn more about Levi subgroups could have a look at [Sik12, §3]. We recall nevertheless
that when G = GL(n, C) and P is a parabolic subgroup of G stabilizing some flag F; < - -+ < F;, then a Levi subgroup
L of P consist of the elements of P that preserve a decomposition F; = Ey, Fo = E1® FE2, ..., Fr =E1®--- D Ey.
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Lemma 3.2.18. Let G be a reductive algebraic group. Irreducible representations ¢: I' — G are

reductive:
Hom™ (', @) ¢ Hom™(I", G).

Proof. The proof relies on the observation that irreducible subgroups of reductive algebraic groups

are completely reducible. This is proved in [Sik12, §3] using the notion of Levi subgroups. O

The converse of Lemma 3.2.18 is not true in general. However, the following holds.

Lemma 3.2.19. Let G be a reductive algebraic group. A reductive representation into G is irre-

ducible if and only if it is regular:
Hom™ (T, G) = Hom™(T', G) n Hom™&(T', G).

The reader is referred to [Sik12, Cor. 17] for a proof of Lemma 3.2.19. Reductive representations

can be characterized as follows:

Proposition 3.2.20. Let G be a reductive algebraic group. A representation ¢: I' — G is reductive
if and only if the the Inn(G)-orbit Oy of ¢ is closed in Hom(T', G).

A proof of Proposition 3.2.20 can be found in [Sik12, Thm. 30], based on an argument of
[JM87]. An immediate consequence of Proposition 3.2.20 is that the points of the topological

quotient Hom™ (", @)/ Inn(G) are closed, i.e. it is a 77 space.®

Proposition 3.2.21 ([RS90]). Let G be a reductive algebraic group. The topological quotient
Hom™ (T, G)/Inn(G)

is Hausdorff.

The reader is referred to [RS90, §7.3] and references therein for a proof of Proposition 3.2.21.

3.2.4 Zariski dense representations

Some authors favour the notion of Zariski dense representations over irreducible representations,
see for instance [Labl3] or [Monl6].

Definition 3.2.22 (Zariski dense representations). Let G be an algebraic Lie group. A repre-
sentation ¢ € Hom(T',G) is called Zariski dense if ¢(T') is a Zariski dense subgroup of G. It
is called almost Zariski dense if the Zariski closure of ¢(I') contains G°. The Inn(G)-invariant
spaces of Zariski dense and almost Zariski dense representations are denoted HomZd(RG) and
Hom?%4 (T, G), respectively.

Recall that a subgroup H of an algebraic groups G is Zariski dense if and only if any regular

function that vanishes on H also vanishes on G.

Lemma 3.2.23. Let G be an algebraic Lie group. Almost Zariski dense representations are irre-
ducible:
Hom®?4(T", G) ¢ Hom™ (T, ).

3See Section 4 for a reminder of some notions of separability.
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Proof. Let ¢: T' — G be almost Zariski dense. By definition, the Zariski closure of ¢(T") contains
G°. In particular, no proper parabolic subgroups of G° can contain the identity component of
the Zariski closure of ¢(I"). Since parabolic subgroups are by definition Zariski closed, no proper

parabolic subgroup of G can contain ¢(I"). O

Example 3.2.24. Let g, ..., ay, € (0,27)" be angles such that a; +. . .+, = 2k7 for some integer
k. Let F,, = {a,...,a,y denote the free group on n generators. We consider the representation
¢: F,, — PSL(2,R) defined by ¢(a;) = rot,, in the notation of (A.2.2). The representation ¢ is not
Zariski dense because its image lies inside PSO(2, R) which is Zariski closed in PSL(2,R). However,
¢ is irreducible as one can check that ¢(I') has no fixed point in RP' = R?/R*. Consider now
the representation ¢ defined as the composition of ¢ with the inclusion PSL(2,R) < PSL(2,C).
Observe that ¢: F,, — PSL(2,C) is reducible since it fixes [1 : i] € CP' = C2/C*, and it is again
not Zariski dense because its image lies inside PSO(2, C) which is Zariski closed in PSL(2, C).

Remark 3.2.25. It was established in Lemma 3.2.23 that Zariski dense representations into any
algebraic group are irreducible. The converse statement for SL(2,C) can sometimes be found in
the literature, see e.g. [Mon16, Rem. 2.13]. It is not true. For instance, given a finite non-abelian
subgroup G of SL(2,C) of order g, then there is a surjective group homomorphism F, — G, where
Fy ={m,...,7g) is the free group on g generators. The fundamental group of a closed surface of
genus g maps surjectively to F, by a;,b; — 7;, where a;,b; refer to the presentation (1.4.1). We
obtain two irreducible representations 759 — SL(2,C) and F; — SL(2,C) that are not Zariski

dense.

Lemma 3.2.26. Let G be an algebraic group such that Z(G) = Z(G®). If ¢ € Hom**4(T, @), then

¢ 1is very regular, i.e.

In particular, almost Zariski dense representations are good:
Hom™(T, G) ¢ Hom®*°Y(T', G).

Proof. The argument is taken from [Lab13, §5.3]. Denote by Z(Z(¢)) the centralizer of Z(¢) =
Z(¢(I')) in G. Tt is a Zariski closed subgroup of G that contains ¢(I"). Hence, by almost Zariski
density of ¢(I'), it holds G° < Z(Z(¢)) and thus Z(¢) c Z(G°). Since we assumed Z(G°) = Z(G),
we conclude that Z(G) = Z(¢). It now follows from 3.2.23 that almost Zarsiki dense representations
are good. O

It follows from Theorem 3.2.11 and Lemma 3.2.23 that, for a reductive algebraic group G (hence
connected) and I' = 7, o a closed surface group, the Inn(G)-action on the subspace of Zariski dense
representations is free and proper, compare [Labl3, Thm. 5.2.6] and [Monl6, Lem. 2.10]. It is
interesting to note that the resulting quotient, at least in the case when Z(G) is finite, has the

same dimension as the quotient from Corollary 3.2.14.
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3.2.5 Summary

We summarize all the different notions of representations introduced above in the form of a Venn

diagram depicted in Figure 3.1.

. Zariski open
: locally free
: free

: proper

o
@
v
¢

reductive

Figure 3.1: We assume for simplicity that G is a reductive algebraic group (hence connected). The
two largest families of representations are the regular and the reductive ones. Their intersection is
the set of irreducible representations. A representation that is irreducible and very regular is called
good. Zariski dense representations are good.

3.3 Invariant functions

Definition 3.3.1 (Invariant functions). We say that a function Hom(I',G) — K for some field
K (typically R or C) which is invariant under the conjugation action of G is called an invariant

function of the representation variety.

In this section, we will focus on algebraic groups G over K € {R,C}. Recall that when this is
case, then Hom(T', G) inherits the structure of algebraic variety. The algebra of regular functions
on the variety Hom(T', G)— also known as its coordinate ring—is denoted K[Hom(T', G)] and the

subalgebra of invariant functions is denoted by
K[Hom(T', G)]¢.

We are interested in describing a generating family for K[Hom(I", G)]¢. In this context, “generate”
should be understood in the algebraic sense; that is, a generating family is a collection of invari-
ant functions such that any invariant function can be written as a polynomial expression in the

generating functions.
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Remark 3.3.2. It is worth recalling Nagata’s Theorem at this stage which implies that, if G is a
reductive algebraic group over C, then C[Hom(I', G)]¢ is finitely generated, see for instance [Dol03,
Thm. 3.3].

There is standard way to construct invariant functions Hom(I',G) — K from a conjugacy
invariant function f: G — K. Pick an element v € I" and define the function f,: Hom(I',G) - K
by fy(¢) = f(é¢(7)). To make our life easier, we will only consider the case where G is a linear
algebraic group G ¢ GL(m,K). In that case, classical examples of conjugacy invariant functions
G — K include the trace Tr: G — K or the determinant det: G — K*. The invariant functions

constructed from the trace will play a central role.

Definition 3.3.3 (Trace functions). When v € T', we call the invariant function

Try: Hom(I',G) - K
¢ = Tr(¢(7))-

the trace function of v. We denote by T(I', G) the subalgebra of C[Hom(I", G)]¢ generated by trace

functions.

Example 3.3.4. Tt is known since Fricke and Vogt that C[Hom(T',SL(2,C))]3*20) is gener-
ated by the trace functions Tr., for v € I'. In this case, since SL(2,C) enjoys the trace relation
Trypy, +Tr -1, = Try, Try, for any 71,72 € I, we observe that C[Hom(T, SL(2, C))]S49) s
linearly generated by trace functions. We will elaborate on the case of SL(2,C) below in Exam-
ple 3.3.10.

The next sections are dedicated to trying to understand better the relation between T (T, G)
and C[Hom(T, G)]¢.

3.3.1 Procesi’s fundamental theorems of invariants

Procesi studied the “invariants of n-tuples of m x m matrices” in [Pro76]. This can be made precise
with the following notation. Let K denote either the field of real or complex numbers. We denote by
M, (K) the algebra of m x m matrices with coefficients in K. Let M,,(K)" = M,,(K) x...x M,,(K)
and K[M,,, (K)™] be the algebra of polynomial functions in n matrix variables &, = (xf,j)ivjzl _____ m-
The group GL(m, K) acts diagonally on M,, (K)™ by conjugation. For any subgroup G ¢ GL(m, K),
the subalgebra of K[M,,(K)"] that consists of G-invariant polynomials is denoted K[M,,(K)"]¢
and called the algebra of invariant.

In the notation of representation varieties, M,,(K)" is replaced by Hom(F;,, M,,(K) where F,
denotes the free group on n generators, and K[M,,(K)"]¢ = K[Hom(F,, M,,(K)]¢. Depending on
G, K[M,,,(K)"]“ may contain more or less functions. For instance, when G' = SO(m, K), then the
function M,,(K)? — K defined by (X,Y) — Tr(XY?) is invariant under SO(m,K) conjugation,
but not under conjugation by the larger group SL(m,K). Procesi proved the following the following
statement about system of generators for M,,(K)? — K [Pro76, Thm. 3.4].

Theorem 3.3.5 (Procesi’s First Fundamental Theorem). The following hold:
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o If G € {GL(m,K),SL(m,K)}, then K[M,,(K)"| is finitely generated by trace polynomials
Tr(W), where W is a reduced word in &1, ...,&, of length at most 2™ — 1.

o If G € {O(m,K),SO(m,K)}, then K[M,,(K)"] is finitely generated by trace polynomials
Tr(W), where W is a reduced word of length at most 2™ —1 in &y, ..., &, and their orthogonal

transposes.*

o IfG = Sp(2m,K), then K[Ma,,(K)"]% is finitely generated by trace polynomials Tr(W), where

W is a reduced word of length at most 2™ — 1 in &1,...,&, and their symplectic transposes.”

A proof of Theorem 3.3.5 can be found in [Pro76]. For a more recent account, the reader can
consult [DCP17].

One could now ask what happens when M,,(K)" is replaced by a linear algebraic group
G c GL(m,K) and what are the invariants of G™. In other words, what would be a generating
family for C[Hom(F},,G)]¢. The answer will of course depends on G. For instance, the function
det™: GL(m,C) — K* is non-trivial and invariant under GL(m,K). Its restriction to SL(m, K)
however is the constant function 1. Using the Cayley-Hamilton Theorem, it is possible to express
the determinant of X € GL(m,K) as polynomial in Tr(X™),... , Tr(X), so the inverse of the de-
terminant can be expressed as a rational function of traces. It is explained in [Mar22, Sec. 2] how
trace functions and the invariant functions associated to the inverse of the determinant generate

the invariants of n matrices in GL,, (K).

Theorem 3.3.6. The algebra C[Hom(F,,, GL(m,K)]“0™K) is generated by the invariant functions
Tr, and det;1 for v € F,. In particular, C[Hom(F,, SL(m, K)]S“("™X) is generated by the trace
functions Tr., for v € F,, only.

There exist analogues statements to Theorem 3.3.6 for Sp(2m, K) and SO(2m+1,K). The story
is slightly more subtle for SO(2m,K). We refer the reader to [Mar22, Sec. 2.3] for more details.

Obviously, trace functions on words are not algebraically independent. Luckily, Procesi also
described a collection of generators for the ideal of relations among the generators of Theorem 3.3.5
in [Pro76, Thm. 4.5] (see also [DCP17, Thm. 4.13]). The bottom-line is that the ideal of relations

is generated by trace identities.

Theorem 3.3.7 (Procesi’s Second Fundamental Theorem). The ideal of relations in K[M,, (K)™]Lm ()
for the generators Tr(W) from Theorem 3.5.5 is generated by Tr(1) —m and

D1 elo) T (Wo, Wh, ..., W),

O'GSm+1

where Wo, W1, ..., Wy, run over all possible reduced words in &1,...,&,. Here, Sy,+1 denotes the
symmetric group on m + 1 symbols, (o) is the signature of o, T = [[ T for the decomposition
of o into the product of cycles oy (including trivial cycles), and finally, if oy is the cycle (iy -+ ix),
then Te?'(Wo, We, ..., W) = Te(W,, --- W;,).

4The orthogonal transpose of a matrix is the inverse of its transpose. The orthogonal group O(m,K) consists
precisely of the matrices that are equal to their orthogonal transposes.

0 Im
—Im O
m x m identity matrix. The symplectic group Sp(2m,K) consists precisely of the matrices that are equal to their
symplectic transposes.

5The symplectic transpose of a matrix A € Ma,, (K) is the matrix JAtJ, where J = and I,, is the
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Before illustrating Theorem 3.3.7 with Example 3.3.10 below, we explain what happens to
the algebra of invariant functions of the presentation variety when F;, is replaced by a finitely
generated group I'. So, let I' denote a finitely generated group with generating family (v1,...,vxs).
The embedding 2: Hom(T', G) € G™ = Hom(F,,, G) induces a surjective morphism

*: C[G"] — C[Hom(T', G)]. (3.3.1)
The morphism +* maps invariant functions to invariant functions and thus restricts to a morphism

(+*)¢: C[G"]¢ - C[Hom(T', G)]¢. (3.3.2)

G

If we further assume G to be reductive, then (:*)“ is surjective. This is a consequence of the

existence of Reynolds operators, see [Sik13, Rem. 25] or [Hos15, Cor. 4.23]. The morphism (2*)“

maps trace functions to trace functions in the following sense.

Lemma 3.3.8. Let W be a reduced word in the matrices variables &1, ...,&,. It holds that

(") (Te(W)) = Ty

Visees¥n) *

Proof. The word W induces a word map W: G™ — G. The trace function Tr(W): G™ — C sends
(g15---,9n) to Tre(W(g1,...,g,)). The image (+*)%(Tr(W)) is the invariant function Hom(T', G) —
C given by ¢ — Tr(W(é(y1),--.,¢(vn))). Because ¢ is a group homomorphism, it holds that
Te(W(p(11), ... 0(m))) = Tr(d(W (1, ..,7)), where we now think of W as a function W: I'"* —
I'. We conclude that (+*)%(Tr(W)) = Tryy( O

Visees¥n)*

Lemma 3.3.9. Let G < GL(m,C) be a reductive linear algebraic group such as SL(m,C). If the
algebra C[G™]€ is generated by trace functions, then

C[Hom(I', )] = T(T', G).

Proof. 1If G is reductive, then (2*)¢ is surjective and so (:*)%(C[G"]¢) = C[Hom(T, G)]¢. More-
over, (+*)% maps trace functions to trace functions, thus, if C[G™]¢ is generated by trace functions,
then it holds (+*)%(C[G"]%) = T(T,G). O

We have seen in Theorem 3.3.6 that C[G™]“ is generated by trace functions for G = SL(m, C),
but not for G = GL(m, C) since we need to account for the inverse of the determinant. In particular,

we conclude for Lemma 3.3.9 that
C[Hom(T', SL(m, C))]54™C) = (T, SL(m, C)).

Example 3.3.10. When G = GL(2, C), Theorems 3.3.5 and 3.3.7 say that the algebra of invariant
functions C[Hom(T', GL(2,C))]¢*2©) is generated by Tr., and det;1 for v € T and the ideal of

relations is generated by Tr; —2 and

Trq Trg Try — Tro Trgy — Trg Troy — Try Trap + Tragy + Traqs, (3.3.3)
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for a, B,y €T.
If we further restrict G to SL(2, C), then it is possible to simplify these relations to Tr; —2 and
to the famous trace relation
Trq Trg —Trop — Trop— (3.3.4)

for a;, B € I'. In other words, there is an isomorphism of C-algebras
C[Hom(T, SL(Q,(C))]SL(ZC) = ClX, iy el /(Xl =2, X5 X5 = Xgim — X%W;l) .

To see that, it suffices to recover (3.3.3) from (3.3.4). Note that by taking o = 1 in (3.3.4),
we obtain the relation Trg —Trg—1. From (3.3.4), we obtain Tragy = Tro Trg, — Trqy-15-1. We
further compute Try,-15-1 = Troy—1 Trg — Trgq,-1. Now, Troy—1 = Trg Try — Troy and Trga -1 =
Trge Try — Trgay. Combining these relations lead to (3.3.3) which proves the claim.

3.4 Characters

The reader may have already wondered where the name “character variety” comes from. The notion
of “characters” is some sort of dual to trace functions in the sense that a character is defined by
fixing a representation and letting « € " be the variable. We will assume here that G ¢ GL(m, C)

is a linear algebraic group.

Definition 3.4.1 (Characters). The character of a representation ¢ € Hom(T', G) is the function

X¢: ' = C
7 = Te(é(7))-

In other words, x4(v) = Tr,(¢). We denote by x(I',G) © CT the set of all characters coming
from representations in Hom(T',G). We equip it with the subspace topology inherited from the

compact-open topology on Cr.
Note that x(T', G) = C' is automatically a Hausdorff space because C! is a Hausdorff space.
Theorem 3.4.2 ([CS83]). If G = SL(2,C), then x(I',SL(2,C)) < C is a closed algebraic variety.

We refer the reader to Culler-Shalen’s paper [CS83, Cor. 1.4.5] for a proof of Theorem 3.4.2.
The map
Hom(T', G) — x(T', G)

is surjective by definition and factors through the quotient Hom(I',G)/Inn(G). We point out
however that a character does not necessarily determine a unique conjugacy class of representations.
For instance, the two representations of Example 3.2.1 are not conjugate but determine the same

character. Nevertheless, we have the following statement.

Proposition 3.4.3. Let G < GL(m, C) be a linear algebraic group. Conjugacy classes of irreducible

representations are determined by their characters.
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Culler-Shalen provide a proof of Proposition 3.4.3 in [CS83, Prop. 1.5.2] for the case G = SL(2, C)
and claim that the result still holds when SL(2,C) is replaced by GL(m, C). The analogous result

for almost Zariski dense representations can be found in [Lab13, Cor. 5.3.7].
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Chapter 4

Character varieties

Overview

First via Example 2.1.6 and then through Chapter 3, we highlighted the relevance of the quotient
space Hom(T", G)/Inn(G). If we equip it with the quotient topology, it serves as our fist prototype
of character variety. The goal of this chapter is to introduce several other notions of character
varieties, using more sophisticated quotients, in order to have some guarantees on the separability
of its topology or its geometric properties. A specification sheet, as well as a pair of examples of
character varieties, will be described in Section 4.1. The four definitions of character varieties that

we will introduce are
e Hausdorff character variety (Section 4.2),
e 71 character variety (Section 4.3),
e Algebraic (or GIT) character variety (Section 4.4),
e Analytic character variety (Section 4.5).

We conclude this chapter by some considerations on the tangent spaces to character varieties in
Section 4.6.

4.1 Foreshadowing a definition

When we simply equip the quotient Hom(T', G)/Inn(G) with the quotient topology, we observed in
Chapter 3 that there is no reason to expect this quotient to have any reasonably nice topological
structure. This is explained by the conjugation action of G on the representation variety being
non-free and non-proper in general. We present a couple of examples of topological quotients below
in Section 4.1.1. Tt would therefore be ill-advised to simply define the character variety of the pair
(', G) to be the topological quotient Hom(I',G)/Inn(G). Before presenting our four alternative
quotients (Sections 4.2— 4.5), we describe a prescription sheet.

The first property that expect from a character variety are some reasonably good separability

properties. We will mainly focus on two notions of separability which we now recall.
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Definition 4.1.1 (Separability). A topological space X is said to be

e 7, if for any pair of distinct points in X, each point lies in an open set that does not contain

the other, or, equivalently, X is 77 if the points of X are closed.

e 75 or Hausdorff if for any pair of distinct points in X, there are two disjoint open sets such

that each contains one of the two points.

No matter what our definition of character variety is, it should also come with a projection
from Hom(T', G) that factors through the quotient Hom(I',G)/Inn(G). In other words, we would
like to construct the largest possible finer quotient of Hom(I',G)/Inn(G) whose topology enjoys
some regularity properties, or even has the structure of a variety or of a smooth manifold. We
will present several definitions of character varieties below, each of them guaranteeing increasingly

richer structures for the price of requiring more assumptions on I' and G.

4.1.1 Guiding examples

We will start with a series of examples, trying to understand better what a character variety should

be and where things go wrong.

Abelian target group

When G is abelian, then the Inn(G) action on Hom(I',G) is trivial. In that case, the character
variety of the pair (I, G) is simply its representation variety Hom(T', G). Observe that in that case
any representation I' — G factorizes through the abelianization I'*? := T'/[T,T'] of " and so

Hom(T, G) = Hom(I'*, G).

In the particular case where G = R and I' = m; X is the fundamental group of some connected
topological space X, we have the following interpretation of Hom(I'*?, G). By the Hurewicz The-
orem, the abelianization of m X is isomorphic to the first homology group H;(X,R) of X. This
shows that the character variety Hom(71 X, R) is naturally isomorphic to the vector space given by

the first cohomology of X:
Hom(m X, R) = Hom(H, (X,R),R) = H*(X,R).

Free group on one generator

This example considers the case where I' = Z is a the free group on one generator. In that case,
the topological quotient Hom(Z, G)/Inn(G) is the space of conjugacy classes of G. Sometimes it is
simply denoted by

G/G := Hom(Z, G)/Inn(G).

So, defining what the character variety of the pair (Z, @) should be, amounts to defining a suitable
notion for the space of conjugacy classes of G.

We started to study the case G = PSL(2,R) in Example 3.2.1. We already observed that
PSL(2,R)/PSL(2,R) is not a Hausdorff topological space. It is actually not even T; since, in the

52



notation of Example 3.2.1, the closure of the orbit of ¢; always contains the orbit of ¢. If we take
all the conjugacy classes of PSL(2,R) into account, as illustrated on Figure A.1 from Appendix A,
we obtain the following cartoon picture of PSL(2,R)/PSL(2,R). The elliptic conjugacy classes

spar,

hyp,
roty \‘ If

are parametrized by the parameter 6 € (0, 27) with roty approaching the identity as 6 approaches
0 or 2mw. The hyperbolic conjugacy classes are parametrized by the positive real number A and
hyp, gets arbitrarily close to the identity as A approaches 0. Finally, the two parabolic conjugacy
classes determined by par, and par_ are the non-closed points of PSL(2,R)/PSL(2,R). Their
closure contains the identity. The lack of separability is denoted by the dashed line. It is worth
observing that par, and par_ corresponds to the only two representations Z — PSL(2,R) that are
not reductive. In other words, Hom™%(Z, PSL(2,R))/Inn(PSL(2, R)) is the Hausdorff, though not

smooth, space given by the circle and the blue half-line meeting at the identity.

4.2 Hausdorff quotient

The first approach consists in considering the Hausdortlization of the topological quotient. The
Hausdorffization of a topological space X is broadly speaking the largest Hausdorff quotient of X.

Let us give a more precise definition.

Definition 4.2.1 (Hausdorffization). Consider the equivalence relation on X given by « ~ y if and
only if x ~ y for all equivalence relations ~ on X such that X/~ is Hausdorff (such a relation ~

always exists, as one can identify all the points of X). The quotient
Haus(X) :== X/~

is the Hausdorffization of X.

Lemma 4.2.2. The space Haus(X) is a Hausdor(f topological space. Moreover, the space Haus(X)
has the following universal property: If Y is a Hausdorff topological space, then any continuous

map X — Y factors uniquely through the projection X — Haus(X).

Proof. First we prove that Haus(X) is a Hausdorff space. Let z,y € X be two points with x # y.
By definition, there exists an equivalence relation ~ on X with Hausdorff quotient such that = % y.
Since the projections of x and y in X/~ are separable and the map X/~ — X /= is continuous,
the projections of z and y are also separable in X/~.

Let now Y be a Hausdorff space and f: X — Y be a continuous map. Define an equivalence

relation on X by = ~ y if and only if f(z) = f(y). The quotient X/~ is homeomorphic to the
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Hausdorff space f(X) c Y. This implies the existence of a continuous surjective map Haus(X) —
f(X) such that f is the composition X — Haus(X) — f(X) c Y. The factoring map is uniquely
determined by f. O

Corollary 4.2.3. If x and y are two points of X such that @ N @ # &, then x ~y.

Proof. Since Haus(X) is Hausdorff, its points are closed. In particular, the conjugacy classes for
the relation ~ are closed subsets of X. If we assume that = # y, then the conjugacy classes of x and

y are disjoint closed subsets of X. This implies that the closures of {z} and {y} are disjoint. O

Definition 4.2.4 (Hausdorff character variety). The Hausdorff character variety of a finitely gener-
ated group I' and a Lie group G is the Hausdorffization of the topological quotient Hom(T", G)/Inn(G)
and is denoted

Rep”? (', G) .= Haus <H0m(r, G) /Inn(G)) .

The construction of character varieties by Hausdorff quotients has the advantage to work in
a broad sense: it makes sense for any finitely generated group I'" and any Lie group G (even for
any topological group G). The downside of the Hausdorff quotient is its lack of concreteness. It is

nevertheless a common choice in the literature, such as in [Mon16] for instance.

4.3 71 quotient

An alternative to the Hausdorfl quotient is the 7; quotient used in [RS90, §7]. Let us start with
some notation. For a topological group G acting on a space X, we denote the G-orbit of x € X by

O.. We will assume that the action of G on X has the following crucial property:
Vre X, O, c X contains a unique closed G-orbit. (4.3.1)
We write X // G to denote the set of closed orbits for the action of G on X and define
X ->X/)G

to be the map that sends z to the unique closed orbit contained in O,. A topology on X // G is
defined by declaring 7 to be a quotient map, i.e Z < X // G is closed if and only if 771(Z) ¢ X is
closed.

Alternatively, one could consider the relation on X defined by
rxy o 0,n0,#J.

It turns out that this is precisely the relation behind X // G.

Lemma 4.3.1. Under the assumption (4.3.1), the relation ~ is an equivalence relation and X /| G

is homeomorphic to the quotient X /=~.

Proof. The relation ~ is obviously symmetric and reflexive. We prove that it is also transitive.

Assume that z ~ y and y ~ z. In particular, O, N Oiy is nonempty and thus contains an element
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w. Since O, n O, is closed and G-invariant, it holds O,, ¢ O, n O,. We conclude that O, n O,
contains a unique closed orbit which is the one contained in O,,. Similarly, (’)7y n O, contains a
unique closed orbit. By uniqueness of the closed orbit contained in @, the two must coincide.
Hence, O, n O, n O, contains O,, and is therefore nonempty. This shows that z ~ 2.

To see that X // G = X/, observe that, by the above argument, 7(z) = w(y) if and only if

x =~ y. Both are quotients of X and therefore homeomorphic. O

Lemma 4.3.2. The space X // G has the following universal property: for every Ty space Y, any
continuous map X — 'Y that is constant on G-orbits factors uniquely through 7: X - X // G.

Proof. Let Y be T with a continuous map f: X — Y that is constant on G-orbits. Let z € X. We
want to prove that f is constant on O,. Let y = f(z). Since Y is 77, the singleton {y} < Y is closed
and so is f~!(y). Therefore, O, c f~!(y) and f is constant on O,. This shows that f: X — Y
factors through X // G. The factoring map f: X /G — Y is continuous and uniquely determined
by f. O

In the case that X /G is a T; space, then Lemma 4.3.2 says that X //G is the largest 71 quotient
of X. There is a relation between X // G and the Hausdorffization of the topological quotient X /G

as shown in the following lemma.

Lemma 4.3.3. There is a natural surjective continuous map

X —» X/G

I i

X // G --2-» Haus(X/G)

Proof. Let x and y be two points of X. Lemma 4.3.1 says that if 7(z) = n(y), then O, n O, # &.
This means the closures of O, and Oy, seen as singletons in X /G, have a nonempty intersection.

By Corollary 4.2.3, we conclude that « and y project to the same point in Haus(X/G). O
Corollary 4.3.4. If X // G is Hausdorff, then it is homeomorphic to the Hausdorffization of X /G.

Definition 4.3.5 (7; character variety). If the conjugation action of G on the representation

variety Hom(T', G) satisfies property (4.3.1), we define the T; character variety of T' and G to be
Rep” (T, G) := Hom(T', @) // Inn(G).

Note that the 77 character variety of I' and G might not be a 77 space, but always lies over any
T1 quotient of Hom(I', G) by Lemma 4.3.2. In particular, by Lemma 4.3.3, there is a surjection

Rep” (', G) - Rep” (T, G)

which is a homeomorphism when Rep” (T, G) is Hausdorft.
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4.4 Algebraic quotient

When G is a complex reductive algebraic group, such as SL(n,C) for instance, then it is possible
to define a notion of character variety using the complex algebraic nature of the representation
variety. The definition is based on geometric invariant theory—in short, GIT. The idea is to define
a variety from what should be its algebra of regular functions. The reader may consult Sikora’s
notes [Sik12], or [Dre04, §2] and [Loul5, §B.5] for further details.

Recall that if G is a complex algebraic group then the representation variety Hom(T', G) is an
algebraic variety by Lemma 2.1.3. It is common in algebraic geometry to study a variety through its
algebra of regular functions. In Section 3.3, we studied the algebra of regular functions of Hom(T", G)
which was denoted by C[Hom(T',G)] and its subalgebra of G-invariant functions C[Hom(I",G)]“.
We reminded the reader about Nagata’s Theorem which implies that C[Hom(T',G)]¢ is finitely
generated when G is reductive, see Remark 3.3.2. In that case, there is an algebraic variety denoted
Spec(C[Hom(T, G)]¢), called the spectrum of C[Hom(I', G)]¢, whose algebra of regular functions is
C[Hom(I", G)]¢. More concretely, one may think of the spectrum of C[Hom(I', G)]¢ as the algebraic
variety given by the set of points inside C™ that belong to the image of Hom(T', G) under a family
of generators (fi,...,f,) of C[Hom(T',G)]“. Recall from Section 3.3 that when G is the linear

algebraic group SL(n,C), then a system of generators is provided by trace functions.
Definition 4.4.1 (GIT character variety). The GIT character variety of a finitely generated group
I" and a complex reductive algebraic group G is defined to be

Rep“'™(I', @) := Spec(C[Hom(T', G)]%).
The GIT character variety is sometimes denoted by Hom(T', G)//G using the double quotient-bar
notation.

In other words, the GIT character variety is the algebraic variety whose algebra of regular
functions are the invariant functions of Hom(I', G). The GIT character variety has by definition the
structure of a complex algebraic variety. As such, it is a Hausdorff space for the Euclidean topology.

The inclusion C[Hom(T', G)]¢ < C[Hom(T', G)] induces a surjective morphism of algebraic varieties
p: Hom(I', G) — Spec(C[Hom(T, G)]%).
We recall here some general properties of GIT quotients. The reader may consult [Dre04, §2]

and [Loulb, §B.5], and references therein, for proofs.

Lemma 4.4.2. The GIT quotient Spec(C[Hom(T', G)]%) has the following universal property: for
every algebraic variety Y, any morphism Hom(I',G) — Y that is constant on G-orbits factors
uniquely through p: Hom(T', G) — Spec(C[Hom(T',G)]%).

Lemma 4.4.3. The projection p: Hom(T',G) — Spec(C[Hom(I', G)]%) has the following proper-

ties.

1. For any two representations ¢1, d2 € Hom(T', G), it holds that
p(¢1) =pld2) = Oy 0Oy, # .
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2. Any fibre of p contains a unique closed orbit (compare (4.3.1)).

When we combine Lemma 4.4.3 and Lemma 4.3.1 we obtain that the underlying topological
structure of the GIT character variety of I' and G coincides with the 7; character variety. Since
the GIT character variety is a Hausdorff space, it further coincides with the Hausdorff character

variety by Corollary 4.3.4

Rep®'T(I, @) = Rep (T, G) = Rep? (T, G).

4.4.1 (Poly)stable representations
The GIT character variety can be described more concretely as follows.

Definition 4.4.4 (Stability of representations). Let G be an algebraic group. A representation
¢o: ' -5 Gis

e polystable if Oy is closed.
e stable if ¢ is polystable and regular.

The Inn(G)-invariant subspace of polystable representations is denoted Hom"®(T", G) and the sub-

space of stable representations is denoted Hom®*(I', G).
These notions are redundant if G is a reductive complex algebraic group because of the following.

Proposition 4.4.5. Let G be a reductive complex algebraic group. Let ¢ € Hom(T', G) be a repre-

sentation. Then
1. ¢ is reductive if and only if ¢ is polystable,
2. ¢ is irreducible if and only if ¢ is stable.

The first assertion of Proposition 4.4.5 was already stated in Proposition 3.2.20. The second

assertion is a consequence of Lemma 3.2.19.

Theorem 4.4.6. Let G be a reductive complex algebraic group. The topological quotient
Hom™ (T, G)/Inn(G) = Hom™ (', @)/ Inn(G)

is homeomorphic to RepGIT(RG). It contains the Zariski open subset given by the topological
quotient
Hom*(T', G)/Inn(G) = Hom™ (', @)/ Inn(G).

Proof. Polystable representations have a closed orbit under the Inn(G)-action by definition. So, the
first statement of Lemma 4.4.3 implies that the projection p: Hom(T, G) — Spec(C[Hom(T', G)]%)

factors through an injective map
HomP™ (I, @)/ Inn(G) — Rep®™ (T, G).

We can use the second statement of Lemma 4.4.3 to see that this map is also surjective. Recall
now from Proposition 3.2.10 that Hom™ (T, G) = Hom®(T', G) is Zariski open in Hom(T', G). O
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4.4.2 Semi-algebraic quotient

Theorem 4.4.6 says that there is a natural structure of algebraic variety on the quotient of the space
of reductive representations by the Inn(G)-action, given that G is a reductive complex algebraic
group. The GIT theory is sadly not available when G is a real algebraic group. It is not clear in
that case what would be a good definition of “algebraic character variety”. Attempting of defining
it as the real points of the GIT character variety of representations into the complexification G€ of

G runs into the following issues:

e Real points of the GIT character variety of representations into G€ correspond to represen-
tations into one of the real forms of G. For instance, when G€ = SL(2, C), then real points

of an SL(2, C)-character variety correspond to representations into SL(2,R) or into SU(2).

e Two non-conjugate elements of G’ might be conjugate inside G, so non-conjugate representa-
tions into G might be identified when one looks at the real points of the GC-character variety.
For instance, the rotation matrices roty and rots,_p are not conjugate in SL(2,R), but they

are in SL(2, C) because they have the same trace.

It turns out that by restricting to reductive representations before taking the topological quo-
tient, the result space has a natural structure of semi-algebraic' variety by the work of Richardson-

Slowdowy.

Theorem 4.4.7 ([RS90]). Let G be a real algebraic group. The topological quotient
Hom™ (T, G)/Inn(G)

has a natural structure of real semialgebraic variety.

Theorem 4.4.7 is proved in [RS90, Thm. 7.6].

4.5 Analytic quotient

If one is interested in defining a character variety that has the structure of a smooth analytic
manifold, one can restrict to good representations which we introduced in Definition 3.2.12. This
will work well for closed surface groups for instance since we saw in Corollary 3.2.14 that when
I' = 40, then Hom&°(T", G) is a nonempty analytic manifold. In that case, we explained that the

topological quotient Hom&°Y(T', &)/ Inn(G) is a smooth analytic manifold.

Definition 4.5.1 (Analytic character variety). The analytic character variety of a closed surface

group I' = 7, 0 and a reductive algebraic group G is defined to be
Rep™ (74,0, G) := Hom®*° (7, 9, G)/ Inn(G).

The topology of the analytic character variety is Hausdorff. The inclusion Homg‘md(wgyo, G) c

Hom(m, 0, G) induces an inclusion Rep™ (7,0, G) < Hom(my 0, G)/Inn(G). Since Rep™ (7,0, G) is

LA semialgebraic variety is defined to be a set of points satisfying polynomial equalities and inequalities.
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Hausdorff, we obtain an inclusion

Rep™ (74,0, G) — Rep 2 (74,0, G).

4.6 Tangent spaces

In Section 2.3, we described what the Zariski tangent spaces to the representation variety Hom(T', G)
and to the orbit of a representation Oy4 are. We explained that they can be identified with the vector
spaces of 1-cocycles Z(T', g,), respectively of 1-coboundaries BY(T',gs). It would be tempting to
affirm that the tangent space to Hom(I', G)/Inn(G) at the conjugacy class [¢] is simply equal to
the quotient Z(T, g4)/B (T, g») which identifies with the first cohomology group H'(T', g4). This
is however not the case in general.

The quotient Hom(T', G)/Inn(G) can be given the structure of a ringed space in the sense of
Definition 2.3.1 as follows. If R denotes the sheaf of admissible functions on Hom(I', G) that we
described after Lemma 2.3.2, then a sheaf of admissible functions on Hom(T', G)/Inn(G) can be
taken as the sub-sheaf of R consisting of Inn(G)-invariant functions. We denote in by R“. The
quotient map Hom(T", G) — Hom(T', G)/Inn(G) is a morphism of ringed spaces that induces a map
of their Zariski tangent spaces Ty Hom(I', G) — T[4 Hom(I', G)/ Inn(G). This maps factors through
the quotient Ty, Hom(T', G)/T, O, inducing the linear map

H'(T,g4) — Tjs) Hom(', G)/ Inn(G). (4.6.1)

There is no reason in general for this map to be an isomorphism, as explained in [Kar92, Rem. 1.4].

When T is a surface group, it is possible to say more.

Proposition 4.6.1 ([Gol84]). IfT' = m, o is a closed surface group and G is a reductive algebraic

group, then the map (4.6.1) is an isomorphism on the quotient of good representations
Tis) Rep” (9,0, G) = H' (79,0, 8¢)-

Proof. This is an immediate consequence of Corollary 3.2.14 when n = 0. O

The analogue statement to Proposition 4.6.1 for general surface group m,, in the case G =
SL(m,C) can be found in [Law09, Prop. 8], see also [Law09, Sec. 2.3].
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Chapter 5

Symplectic structure of character

varieties

Overview

Our goal in this chapter is to give a detailed description of Goldman’s natural symplectic structure
on character varieties of representations of closed surface groups into quadrable groups. We will
present the abstract definition in Section 5.1 and consider the case of closed surface groups in
Section 5.2. In Section 5.3, we introduce the notion of relative character variety and explain how

they also carry a natural symplectic structure.

5.1 Abstract definition

Throughout this chapter we assume that G is a quadrable Lie group and we fix a non-degenerate,
symmetric, Ad-invariant bilinear form B: g x g — R. Assume for now that I" is any finitely
generated group. We explained in Corollary 2.3.5 that the Zariski tangent space to Hom(T', G) at
a representation ¢ can be identified with the set of closed 1-cochains Z'(I',g,) < g'. To define
a 2-form on the representation variety Hom(I', G) we use the cup product in group cohomology

(1.3.11). Combined with the pairing B, this gives a map
wi ZY(D,g0) x 21T, 05) > Z2(T, g0 ® go) =% Z*(, R). (5.1.1)

The map w is bilinear and anti-symmetric because the cup product is anti-symmetric in degree 1
(Lemma 1.3.12) and B is symmetric. Building up on the work of Goldman in [Gol84], Karshon

proved the following statement.

Theorem 5.1.1 ([Gol84, Kar92]). Let ¢: Z*(I',R) — R be any continuous linear function that
vanishes on B*(T',R). Then, g ow is a closed 2-form on Hom(T',G).

The main conclusion of Theorem 5.1.1 is the statement that the form ¢ o w is closed. Karshon

gives an elementary proof of the closeness via direct computations in group cohomology.
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The cup product of coboundaries in BY(T',gs) is itself a coboundary inside B*(T', gy ® g4),
showing that the 2-form ¢ o w is degenerate in general. Recall from Proposition 2.3.6 that the
tangent space at ¢ to the G-orbit Oy < Hom(I',G) can be identified with the 1-coboundaries
BT, gs) c g'. So, pow is degenerate at least along the tangent directions to the G-orbit of ¢. In
general, the kernel of ¢ o w might contain more degenerate directions than those which arise from

O

Definition 5.1.2 (Goldman symplectic form). In the case that the G-orbits are the only directions

of degeneracy of ¢ ow, we denote by (wg)s the induced non-degenerate pairings on cohomology:
(wg)g: H' (T, g4) x H'(T,g4) — R.

In a slight abuse of language, we say that wg is the the Goldman symplectic form on the quotient
Hom(T', G)/Inn(G).

The label G in index of w refers to Goldman. We are abusing the terminology “symplectic form”
here since the topological quotient Hom(T', G)/Inn(G) does not need to be a variety in general. It
is also equally abusive to say that the “Zariski tangent space” at [¢] € Hom(I', G)/Inn(G) is the
quotient space H* (T, g,) = Z(T',g4)/B(T, g4). What we should say instead, if one wishes to be
fromal, is that wg is a 2-form on Hom(T",G) that is degenerate precisely along the orbits of the
Inn(G)-action.

5.2 Closed surface groups

We start by considering the case where I' = 7, o is a closed surface group. Let [my 0] be a funda-
mental class for 7, o which we defined in Definition 1.3.17 as a generator of Hs(mg0,Z) = Z (where
Z is the trivial m, o-module). We can also think of [my 0] as a choice of orientation for the surface
¥, 0 under the isomorphism Hy(mg 0,Z) = Ha(X4,0,Z) of Theorem 1.3.8. Integration against [m, ]
gives an isomorphism

[mg0] —: H2(7rg’07R) — R.

Let ¢: Z%(my,0,R) = R be given by the composition of the quotient map Z?(m, o, R) = H?(my0, R)

and the integration against [, ]. Clearly, ¢ vanishes on B?(m, 0, R).

Lemma 5.2.1. Let T' = m, be a closed surface group. The composition of ¢: Z*(my0,R) — R
with the form w of (5.1.1) defines a 2-form on Hom(my 0, G) whose kernel is B (my0,R).

Proof. The proof relies on Poincaré duality in group cohomology for the group 740. It implies that
the cup product
H'(mg,0,R) x H'(mg,0,R) = H?(7g,0,R)

is a non-degenerate pairing. This means that the form ¢ ow is degenerate on B1(7rg’07 R) only. O

Remark 5.2.2. An alternative argument to prove that the form is non-degenerate which does not
use Poincaré duality can be found in [GR98]. Guruprasad-Rajan’s argument uses an inner product
on HY(m,0,R) to define a Hodge #-operator B(m,0,94)" — Z'(74.0,04). If v denotes the image
of the cocycle v under this operation, then they prove that wg(v, *v) # 0.
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The induced non-degenerate closed form (wg)e: H'(74.0,084) X H' (7,0, 84) — R is the classical
Goldman symplectic form for character varieties of closed surface groups representations. The
original argument of Goldman in [Gol84] to prove that the wg is closed is inspired by the work
of Atiyah-Bott from [AB83] who considered the case where G is compact. The proof involves
an infinite dimensional symplectic reduction from the affine space of connections on some vector
bundle, see [Gol84] and [Labl3, §6] for more details.

It is possible to obtain an explicit formula for the Goldman symplectic form in the vocabulary of
group cohomology. This formula was already obtained and used by Goldman in [Gol84, Eq. (3.4)]
to prove that the eponymous form corresponds to the Weyl-Petersson symplectic form on Teichiiller
space. To write down the formula, we will use the explicit fundamental class that we computed in
Section 1.4.2; as well as the formulae for the cup product in group cohomology given in (1.3.11)
and for the cap product (1.3.14).

Proposition 5.2.3 ([Gol84]). The Goldman symplectic form (wg)y: H (74,0, 806) X H (74,0, 86) =

R has the following explicit form on a pair of 1-cocycles u,v € Z (4.0, 84)

(wg)g(u,v) = = > B (u(B; " = b, "R} -v(a)) + B (u(a; "R, = RiY) - o)),

i=1

where R; := [];_,[a;,b;].

Proof. By definition, (wg)g(u,v) = Bsx(u — v) —~ [mg,0], where [my 0] is the fundamental class
computed in Section 1.4.2. We use the cup and cap products formulae (1.3.11) and (1.3.14) to

compute the following. First, observe that

By(u —v) ~ (R, a;) = B(u(R;) - Ad ¢(R;)v(a;))
= —B(u(R;") - v(a;))

where we used the Ad-invariance of B and the relation u(z=!) = — Ad ¢(z~!)v(x). Similarly,

By (u — v) ~ (R;a;b;, a;l) = B(u(R;a;b;) - Ad ¢(Riaibi)v(a;1))

Since u(RlazbZ) = u(Riaibia;I) + Ad ¢(Rlazbza;1)u(al) and Riaibiafl = Ri+1bi7 we conclude that
By (u — v) ~ (Ria;bi,a; ') = B(u(b; ' Ri}y) - v(ai)) = Blu(ai) - v(as)).

Observe also that
By(u—v) ~ (ai,a;") = =B(u(as) - v(a;))

and

Bi(u—v) ~(1,1) =0.
The analogue formulas are available when we replace a; by b;. After summing over alli=1,...,g,
we obtain the desired formula. O

Remark 5.2.4. The Goldman symplectic form depends on the pairing B that we chose for the Lie
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algebra of G. Different choices of pairing for the same Lie group G may lead to different symplectic
structures. Abusing once again of the term “symplectic manifold”, one can say that Goldman’s
construction is a functor form the product category of the category of closed connected oriented
surfaces >4 o with the category of quadrable Lie groups G with a choice of a form pairing B to the

category of “symplectic manifold”
(Egﬁo, (G, B)) o (Hom(m(EQ’o), G)/Inn(G),wQ).

We point out that the quotients Hom(m(X,,0), G)/Inn(G) obtained for different choices of base-
points in X, ¢ are naturally isomorphic (the isomorphism does not depend on the choice of path

connecting different basepoints).

Example 5.2.5. In the case where G = R, we saw in Section 4.1.1 that the character variety of the
pair (74,0, R) can be naturally identified with the vector space H'(X, o, R). This vector space is of
dimension 2¢g and carries a symplectic form given by the so-called intersection pairing. This form
corresponds to the standard symplectic form on R?9 =~ H 1(Eg’o,]R) and also to the wedge product
of differential form when one thinks in terms of de Rham cohomology. It follows from the definition
that, when the paring B is taken to be the product of real numbers, then the Goldman symplectic
form on the character variety of the pair (740, R) corresponds to any of the above symplectic forms
on H'(X,0,R).

5.3 General surface groups

We now consider the case where I' = 7y, is a surface group with n > 1. We already observed
earlier that 7, , is a free group as soon as n > 1 and the representation variety Hom(mg ., G) is
isomorphic to the product G297"~1. This product is too uninteresting to be studied as such for
its geometric properties. Instead, we prescribe some constraints for the image of the boundary
generators in order to obtain a richer space of representations. This leads to the notion of relative

character varieties.

5.3.1 Relative character varieties

Instead of looking at the whole space Hom(m, ,,, G) at once, we would rather decompose it as the

disjoint union of so-called relative representation varieties.

Definition 5.3.1 (Relative representation variety). Let C = (C,...,Cy) be an ordered collection
of conjugacy classes in GG. The relative representation variety associated to (wgyn, (G,C)) is the

subspace of Hom(r, ,,, G) given by
Home (g n, G) == {¢ € Hom(ny »,G) : ¢(c;) € Cy, Vi=1,...,n},

where c1, ..., ¢, refer to the generators of 7, , in the presentation (1.4.1).
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If G/G denotes the set of conjugacy classes in G, then

Hom(my n, G) = |_| Home(7g,n, G).
Cce(GG)n

When we realize 7, as the fundamental group of the surface X, ,, then it is possible to define
a relative character variety as the collection of all representations m%,, — G that sends clock-
wise oriented loops around the punctures of X, , to prescribed conjugacy classes inside G. The

conjugation action of G on Hom(n, ,,, G) restricts to Home (7 5, G).

Lemma 5.3.2. Let G be a Lie group equipped with an analytic atlas. The relative representation
variety Home (4., G) is naturally an analytic subvariety of G*9*". If G is a complex algebraic
group, then Home(my ., G) is an algebraic subvariety of Hom(my ., G). If G is a real algebraic

group, then Home (g n, G) is a semialgebraic subvariety of Hom(mg ., G).

Proof. The proof is analogous to the proof of Lemma 2.1.2. A conjugacy class C € G/G is a smooth
submanifold of G isomorphic to G/Z(c), where ¢ is any element of C' (recall that Z(c) is a closed
subgroup of G). It has a unique structure of real analytic manifold that makes the projection
map G — G/Z(c) an analytic submersion. The relative representation variety Home (7, G) is
naturally identified with the subspace of G?9 x C} x ... x C,, cut out by the single relation of the
surface group 7, ,, (see (1.4.1)). This shows that Home (7 ,,, G) is an analytic subvariety of G297,
Observe now that, if G is a complex algebraic group, then conjugacy classes in G are algebraic
subvarieties of G. This can be seen as a consequence of Chevalley’s Theorem. Moreover, if G is
a real algebraic group, then conjugacy classes in G are semialgebraic subvarieties of G.' This, in

turn, is a consequence of Tarski-Seidenberg Theorem. O]

Definition 5.3.3 (Relative character varieties). The Hausdorflization of the topological quotient
Home¢(mg,pn, G)/ Inn(G)

is called the relative character variety associated to (7Tg,n, (G,C)).

Depending on the properties of the group G and the usage of relative character varieties, Defi-
nition 5.3.3 can be refined by taking more sophisticated quotients in order to get a better control

of its structure similarly as in Section 4.

Tangent spaces

As we did in Section 2.3, we would like to determine the Zariski tangent space to relative character
varieties. We follow the general approach of [GHIJW97, §4], that can also be found in [Law09] in
the case G = SL(m,C). If ev,,: Hom(nm,,,G) — G denotes the evaluation on the fundamental

group element c;, then we can write

Home(mg 5, G) = Hom(mg pn, G) N evc_ll(Cl) N---N evc_nl(Cn).

1 An example of conjugacy classes that are a semialgebraic subvarieties, but not algebraic subvarieties, are parabolic
conjugacy classes inside SL(2, R).
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The evaluation on any fundamental group element is a locally smooth function on Hom(7, ., G).
This means, we can express the Zariski tangent space to Home (7, G) at ¢ as the space of vectors
v in Ty Hom(my ,,, G) for which (dev,)g(v) € Ty(c,)Ci-

Lemma 5.3.4. The conjugacy class C; is a smooth submanifold of G isomorphic to G/Z(¢(c;)).
Its tangent space at ¢(c;) can be identified with the quotient g/3(¢(c;), where 3(¢(c;)) denotes the
Lie algebra of Z(d(c;)). In other words,

Ty Ci = {€ — Ad(d(ci))§ : € € g}

Proof. If g; is a 1-parameter family of group elements inside Z(¢(c¢;)) with derivative £ at ¢t = 0,
then by differentiating the relation g;é(c;)g; ' = ¢(c;) at t = 0, we obtain £¢(c;) — ¢(c;)é = 0.
In order to see as an element of g, we multiply on the right by ¢(c;)~! and obtain the desired

expression. O

Corollary 5.3.5. The Zariski tangent space to Home (T, G) at ¢ can be identified with the vector

space of parabolic 1-cocycles that we introduced in Section 1.3.9

TyHome(D,G) = {ve Z (mgn.0s) : Vi=1,....,n, 3§ € g, v(c;) = & — Ad(¢(cy))&i}

= Zzlmr (7'('9’“7 qu)

Proof. Recall that we identified T, Hom(mry ,,, G) with the vector space of 1-cocycles Z1 (7., g) in
Corollary 2.3.5. A tangent vector v € Z' (7., g4) thus belongs to T, Home(m, n, G) if (deve, ) s(v) €
C; for every i = 1,...,n. We use Lemma 5.3.4 to express this condition in terms of g. This gives
the relations 3¢, € g, v(¢;) = & — Ad(¢(c;))&; which precisely mean that v is exact on the boundary,

proving the identification with parabolic 1-cocycles. O

The tangent space to the G-orbit O, of ¢ € Home (T, G) still identifies with B! (7.1, g4). Recall
that the quotient of parabolic 1-cocycles by 1-coboundaries is the first parabolic group cohomology

group of 7, ,, with coefficients in the 74 ,-module gg:

H;ar (Wg,nv 9¢) = Z;ar (Wg,nv 945)/31 (Wg,nv 945)-

The observations of Section 4.6 on the difference between the tangent space to the quotient and
the quotient of tangent spaces still hold. Analogues of Proposition 4.6.1 are available in literature,

see for instance [Law09, Prop. 10].

Dimension and smooth points

We can use the previous description of the tangent space to compute the dimension of Home (T, G)
at a representation ¢. Recall that we computed in (2.3.2) the dimension of the 1-coboundaries to
be

dim B (7, 9¢) = dim G — dim Z(¢).
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Proposition 5.3.6. Let G be a quadrable Lie group. The dimension of the Zariski tangent space
to Hom(mg n, G) at ¢ is

dim Z'(7y.n,84) = (29 +n — 1) dim G + dim Z(¢)

and the dimension of the Zariski tangent space to Home (7., G) at ¢ is

dim Z},, (g0, 84) = (29 — 1) dim G + dim Z(¢) + ) dim C;.

par
i=1
In particular, the representations ¢ in Hom(my n, G), respectively in Home(mg rn, G), with
dim Z(G) = dim Z(¢)

minimize the dimension of their Zariski tangent spaces. Moreover, the points with dim Z(¢) = 0

(which can only occur if dim Z(G) = 0) are smooth points of Hom(rng ,,, G) and Home (g, G).

Proof. We proceed as in the proof of Proposition 2.4.4. Let A; := ¢(a;), B; := ¢(b;) and D; := ¢(c;),
where a;, b;, ¢; refer to the generators int the presentation (1.4.1). We cousider the relation map
F: G?9%" — @G defined by

g n
F(X1,... . Xg Y1, Yy, 2, Zy) o= [ [ (X0 Yl [ | 2
i=1 i=1
When we differentiate it at (A1,..., Ay, B1,..., By, D1,...,Dy) and identify all the tangent spaces
with g, we obtain a map p: g29t™ — g that can be written as

,LL(Oél, ceey Qg 517 .. aﬂg7717 sy Yn <H Ad ([Aja Bj])) (ai - Ad(AszAz_l)Oél)

) =2
i1 \j<i

- Z <H Ad ([4;, Bj])) (B; — Ad(B; 4;B; ) 3:)
i—1

g n fi-1
+ HAd ([A;, Bi]) Z (H Ad (Dj)> (vi — Ad(Di)vi).

Let V be the orthogonal complement of the image of u with respect to the pairing B. Similarly
as in the alternative proof of Proposition 2.4.3, we can prove that that V' = 3(¢). In particular, p is
surjective as soon as 3(¢) = {0}, or equivalently dim Z(¢) = 0, proving that the relation map F is a
submersion at every ¢ with 3(¢) = {0}. Moreover, the Rank-Nullity Theorem gives the dimension

count:

dim Ty Hom(my p, G) = dim Ker(u)
= (29 +n)dim G — dim Im(p)
= (29 +n—1)dimG + dim Im(p)*
= (2g+n—1)dim G + dim Z(¢).
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In order to compute the dimension of dim T, Home (7w, ., G) we proceed as above, but we first
restrict the relation map to G29 x C; x --- x C, = G (compare with [Law09, Cor. 7]). This has
the effect of replacing the term n dim G by the sum of the dimension of the conjugacy classes C; is
the final formula. O

5.3.2 Symplectic form

We would like to describe an analogue of the Goldman symplectic form from Section 5.2 for general
surface groups. We denote by 0;m,, the subgroup of m,, generated by ¢;. We write dmg ,, for
the collection of subgroups {0;my»}. As we explained in Section 1.3.9, the cup product in group
cohomology restricts to the product (1.3.15) in parabolic group cohomology given by the anti-

symmetric bilinear form
- B
w: Z;m-(ﬂ'g,mg«b) X Z;m-(ﬂg,mgaﬁ) — ZZ(Wg,m 0T gm0 ® 8y) —> Z2(7Tg7m 0mgnsR).

Let [y n, 07g.n] be a generator of Hy(my p, 07y n, Z) = Z such as the one computed in Section 1.4.2.
It corresponds to a choice of orientation on the surface ¥, ,,. Integrating against the fundamental
class [mg.n, 07y n] gives an isomorphism H?(my n, 07y n, R) = R. Let ¢: Z2(my n, 07y n, R) = R be
the composition of the quotient map Z2(my ,,, 01y n, R) = H*(my.n, 0Ty n,R) with the integration
against (7, 0my . Like in the case of closed surfaces, the 2-form ¢ ow is degenerate precisely on

Bl(wg’m 0s). This can be seen as a consequence of Poincaré duality as in the proof of Lemma 5.2.1.

Lemma 5.3.7. The composition of

w: Z;ar(ﬂ-%nvg(ﬁ) x 7, (Tg,ns 86) = Z2(7Tg7nva7rg,mR)

par

with p: Z2 (Tgn, g, R) = R descends to a non-degenerate anti-symmetric bilinear form

(wg)¢: H;ar(ﬂ-g’n7g¢) x H;ar(ﬂg,’rL,g(f)) - R

The closedness of the form was established by Biswas-Guruprasad in [BG93] using methods from
gauge theory. A different argument in terms of group cohomology was provided by Guruprasad-
Huebschmann-Jeffrey-Weinstein in [GHIJW97, Thm. 7.1]. The last group of authors require the
hypothesis that the conjugacy class C; lie in the image of the Lie exponential map exp: g — G, see
also Remark 5.3.10.

Theorem 5.3.8 ([BG93, GHIWI7]). The bilinear form

pow: lem'r(wg”ﬂ7g¢) X Z;ar(ﬂ-g,n;g¢) - R

defines a closed 2-form on Home(mg 0, G).

Remark 5.3.9 (Poisson structure). The representation variety Hom(m, ,,, G) is the disjoint union of
all the relative representation varieties Home (7, ,,, G) over all possible choices for C € (G/G)™. The
quotient of each relative representation variety by the Inn(G)-action has a symplectic structure in

the sense of Theorem 5.3.8. It turns out that these quotients are the symplectic leaves of a Poisson
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structure on the quotient of the representation variety by the Inn(G)-action. The reader is referred
to [BJ21, Law09] for a precise statement, a proof, and references to prior proofs.

Sometimes the notion of stratified symplectic spaces is preferred to that of Poisson manifold as
it is more flexible. The reader can consult [GHIJW97, Sec. 9] where it showed that, when G is a
compact Lie group, then relative character varieties are stratified symplectic spaces with a unique

open and dense top stratum that consists of irreducible representations.

Remark 5.3.10 (Dimensionality of conjugacy classes). We make a little digression on the dimension
of conjugacy orbits inside Lie groups. At every point in the smooth locus of the relative character
variety Home(mg,n, G)/Inn(G) the tangent space is isomorphic to H),,.(7gn, g¢). In Lemma 5.3.7,
we explained that H;M(ng, g4) is equipped with an anti-symmetric non-degenerate pairing. This
implies that the smooth locus of Home(7y,n, G)/Inn(G) has even dimension. When we compare

this statement with Proposition 5.3.6, we conclude that the quantity

n

Z dim C;

i=1
must be an even number. This is quite a remarkable observation, because in general nothing
prevents a conjugacy class inside a Lie group G to have odd dimension. For instance, in the
orthogonal group O(2), all the matrices with determinant —1 are conjugate and their conjugacy
class is isomorphic to a circle. Max Riestenberg pointed out to the author a more general class of
examples of Lie groups that contain conjugacy classes of odd dimension. They are the group of all
isometries, orientation-preserving or not, of an odd-dimensional symmetric space X. In that case,
the conjugacy class of the orientation-reversing isometry s, that reflects through a point p is the
set of all the orientation-reversing isometries s, for ¢ € X and is therefore isomorphic to X.

Nevertheless, conjugacy classes tend to have even dimension due to their relation to coadjoint

orbits. Recall that a conjugacy class C € G/G of some element g € G is a smooth submanifold of
G that is diffeomorphic to the quotient G/Z(g). If G is quadrable, the pairing B on g can be used
to identify coadjoint orbits in g* to adjoint orbits in g. Coadjoint orbits are naturally symplectic,
see e.g. [CdS01, Homework 17]. The Lie exponential map sends the adjoint orbit of £ € g to the
conjugacy orbit of exp(§) in G. Recall however that the Lie exponential map is not necessarily a
local diffeomorphism at every &, but it is at 0 € g. In particular, all conjugacy classes that are the
image of an adjoint orbit that is sufficiently close to 0 € g by the Lie exponential map have even

dimension. This raises the following question.

Question 5.3.11. When does a conjugacy orbit in a quadrable Lie group G have even dimension?

Is it necessarily the case if it lies in the image of the Lie exponential map?

Explicit formulae

We already provided an explicit formula for Goldman’s symplectic form for character varieties of
closed surface groups in Proposition 5.2.3. We now wish to do the same for the surface groups
with punctures. The formula was first obtained by Guruprasad-Huebschmann-Jeffrey-Weinstein
in [GHIJW97, Sec. 8].

If we start with two parabolic cocycles u,v € Z;M(wgyn, gs), then by definition of parabolic
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cocycles, there exist &, (; € g such that

u(c;) = & — Ad(d(c))&,  v(e) = G —Ad(e(e))G, t=1,...,n.

Proposition 5.3.12 ([GHIW97]). The Goldman symplectic form for relative character varieties
(wg)p: Hlyr(Tgns 86) X Hly(Tgn, 86) = R has the following explicit form on a pair of 1-cocycles

par par
U,V € Zpar(ﬂ-g,nag¢)
g
(wg)g(u,v) = Z 3 1Rz+1) v(a z)) +B (u(aflRfl - R;Jrll) 'v(bi))
i=1
Z v(cis1)) + Y, B(& - v(ei)),
= i=1

where R; := ]_[j<i[aj,bj] and S; i==c1+--¢cj.

Proof. The proof is similar to the proof of Proposition 5.2.3 and relies on the explicit fundamental
form for the surface group m, ., computed in Section 1.4.2, as well as on the explicit formulae for
cup and cap products in relative group cohomology provided by (1.3.11) and (1.3.14).

The first step consists in computing a preimage of u inside Z1(7rg7n7 0Tgn,8¢). Note that when

& is seen as a O-cochain inside C°(0;7y.n, 9s) = g, then its differential is the 1-cocycle given by

08i(ci) = Ad(¢(ci))&i — & = —u(ci).

Using the definition of the differential (1.3.8), we observe that the 1-cochain (u,—&;,...,—¢&,) is
closed and is a preimage of u inside Z'(my,,0myn,84). Recalling the fundamental form from
Section 1.4.2 and the explicit formulae for the cap product in relative group cohomology provided

by (1.3.14), we can now compute
(wWg)g(u,v) = Be(u = v) ~ e+ Y Bul& = v) ~ i, (5.3.1)
i=1

where we abbreviated e = v — Z 1% + Y + 2z +w; —¢;. When we develop each cup product
according to (1.3.11), we obtain

n—1

By(u—v) ~y= . B(u(er -+ ¢;) - Ad(g(er -+ e))v(civ))

3
[l
_

B(u(S;) - Ad(¢(S:))v(civ1))

s
Il
-

By (& — v) ~ ¢i = B(&i - v(ci)).

The remaining term in the sum was already computed in Proposition 5.2.3. Using the Ad-invariance
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of B and the identity for the inverse u(z~!) = — Ad(¢(z~1))u(z), we obtain

n n—1 n
B*(UVU)AV‘FZB*(&V'U)ACZ_WQ u,v) = Z v(cip1)) + Z B(&i - v(ci)).
i=1 i=1 i=1
(5.3.2)
It remains to subtract the term of Proposition 5.2.3 top conclude the proof. O
Let us provide one more formula for the case of punctured sphere, i.e. when n = 0.
Lemma 5.3.13. When n = 0, the formula of Proposition 5.3.12 can be rewritten as
n—2
wg(u,v) = 7 B((Gir1 — Civa) - u(SH))- (5.3.3)
i=1

Proof. Using v(¢;) = ¢; — Ad(¢(c;))¢ and the Ad-invariance of B, we get

B(u(S;h) - v(er)) = B(Gi - u(Sih)) — B(Ad(¢(c; ))u(Sh) - G)
By construction, S; ' = ¢; 1S, and thus u(S; ") = u(c; ') + Ad(é(c; H))u(S; ). So,

B(u(S;) - v(ci) = B(Gi - u(S;)) = B(G - u(S7) + B(Gi - ule; ).

Therefore,
wg (u, v) =ZB(Q'U(S ")) = B(G - u(S;h))
) + u(e))

=B((2 - u( S;h) = B(G - u(S2Y))

n

= 2 B(G - (ule ) + ule)

i=1

|
N

n

=Y, B((Cip1 — Giv2) - u(S35H)) Z ) +u(ci))),

i=1 i=1
N

V)

v~

=:Q

where in the second equality we used S;* = ¢;* and in the third equality that u(S;!) = u(1) = 0.
It remains to prove that Q = 0. Using u(x ') = — Ad(¢(z1))u(x), we get

B(Gi - ule; ")) = =B(Ad(¢(c))Gi - ulcy)).

Therefore, using v(¢;) = §; — Ad(é(¢;))E;, we conclude
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By construction, B(u(:) - v(+)) defines a 1-cocycle in Z!(m,,R). Closeness can also be computed
directly using (1.3.2), similarly as in the proof of Lemma 1.3.12. Therefore, Q is equal to the
evaluation of the 1-cocycle B(u(:) - v(+)) on the 1-cycle ¢1 + ...+ ¢,. The 1-cycle Y, | ¢; vanishes
in homology (this is a consequence of the fact that [[;_, ¢; = 1). Hence, @ = B(u(1)-v(1)) = 0 as
desired. O
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Chapter 6

Euler and Toledo numbers

Overview

The topology of a representation variety is notably known to be complicated. The enumeration of
its connected components is a non-trivial task. There exist some invariants that lets us approach
this problem. The most classical one is the so-called Euler number (Section 6.2), later generalized
as Toledo number (Section 6.3). The goal of this chapter is to recall their definitions. I take the
occasion to acknowledge the contribution by Jacques Audibert and Xenia Flamm to the material

presented in this chapter.

6.1 Preliminary observations

We will use the notation mo(X) to denote the number of connected components of a topological
space X. Our first result relates the number of connected of components of a space and of its

Hausdorffization which we introduced in Definition 4.2.1.

Lemma 6.1.1. If X denotes a topological space, then there is a bijection
mo(X) = mo(Haus(X))

induced by the projection X — Haus(X).

Proof. Recall that Haus(X) is defined to be the quotient X/~, where ~ is the equivalence relation
on X defined by z ~ y if and only if &~ y for every equivalence relation &~ such that X/~ is
Hausdorff. Consider the equivalence relation = defined by x =~ y if and only if x and y are in
same connected component of X. The quotient X/ ~= 7y(X) is discrete, hence Hausdorff. The

projections X — X /~— X/~ induce surjective maps
mo(X) = mo(X/~) — mo(X/~) = 7o(X).
We conclude that 7o(X) = mo(X/~). O

The following standard fact will also come in handy later.
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Lemma 6.1.2. Let X be a topological space and G a topological group acting continuously on X.

The quotient map p: X — X /G is open. Furthermore, if G is finite, then p is closed.

Proof. Let U € X be open. We need to prove that p(U) is open in the quotient topology, i.e. we
need to show that p~!(p(U)) is open in X. We have

p~ () = | 9U,

geG

which is open. By the same argument we can deduce that p~1(p(C)) = Ugec gC' is closed if C' is
closed and G is finite. O

Lemma 6.1.3. Let X be a topological space with a continuous action of a connected topological
group G. Then, there is a bijection
mo(X) = mo(X/G)

induced by the projection X — X /G.

Proof. Since G is connected and the action is continuous, G preserves each connected component
of X, i.e. it acts trivially on 7y(X). The quotient map p: X — X /G is an open (by Lemma 6.1.2),
surjective, and continuous map. If C; and Cs denote two distinct connected components of X,
then p(C1) and p(Cs) are disjoint because G preserves each connected component of X. Since p
is an open map, p(C) is open in X /G for every connected component C' of X. Using that p is
surjective, we conclude that each connected component of X /G is covered by disjoint open images
of connected components of X. By connecetedness, there must be exactly one. We conlcude that
mo(X) = m(X/G). O

When we apply the above observations to the context of character varieties, we conclude that
the number of connected components of the representation variety for the pair (I', G) is the same

as for the Hausdorff character variety, assuming that G is connected.

Corollary 6.1.4. If G is a connected Lie group, then

mo(Hom(T', G)) = mo(Hom(T', G)/Inn(G)) = mo (RepT2 T,Q)).

6.2 FEuler number

The idea behind the definition of the Euler number is to measure how hard it is to lift a represen-
tation I' —» G to a representation in the universal cover of G. The fundamental result to keep in

mind is the following.

Theorem 6.2.1. Let I" be a group (not necessarily finitely generated) and G ne a path-connected
topological group. Let G' be a covering group of G. A homomorphism ¢: I' — G lifts to a homor-
phism T — G’ if and only if every homomorphism in the path-component of ¢ inside Hom(T', G)
lifts.
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A proof of Theorem 6.2.1 can be found in [Cul86, Thm. 4.1] The construction of the Euler
number is particularly interesting in the case when I' = 7y ¢ is a closed surface group (and, as we

will see, is also particular to closed surface groups).

6.2.1 Definition

We will write G to denote the universal cover of G and pick any e € G that lifts 1 € G (the choice
of e turns G into a topological group with neutral element e). There is a short exact sequence of
topological groups

1-m(G)»G—>G—1.

The group 71 (G) is equipped with the discrete topology and naturally embeds inside G.

Lemma 6.2.2. Let G be a connected topological group and N < G be a discrete normal subgroup
of G. Then N lies in the center Z(G) of G.

Proof. For n € N we consider the map

fat G—> N, g gng™".

Then f,, is continuous, and since G is connected, so is the image of f,,. Since N is discrete, f, is
constant on G and equal to n. Thus N commutes with every element in G, hence N c Z(G) is

normal. 0
Corollary 6.2.3. The group m1(G) lies in Z(G).

Definition 6.2.4 (Euler number). Let I' = my ¢ be a closed surface group. The Euler number of

a representation ¢: my 0 — G is the element of 71 (G) defined by

en(@) = [ ] [6(ar). o))

g
i=1
where m, gi?(b\?) € G are any lifts of ¢(a;), p(b;).

The name Euler “number” comes from the case where G = PSL(2, R), in which case m; (PSL(2, R)
can be identified with Z. Note that eu(¢) is a lift of 1 € G which explain why it is an element of
st (G) C é

Lemma 6.2.5. The Euler number is independent of the choice of the lifts.

Proof. Different choices of lifts differ by elements of 71 (G). Note that each generator and its inverse

appear exactly once in the definition of the Euler invariant. So, since m1(G) lies inside Z(G) by
Lemma 6.2.2, the product is indeed independent of the choice of the lifts. O

Lemma 6.2.6. The Fuler number is a continuous function
eu: Hom(m,, G) — m(G),
that factors through mo(Hom(m,, G)).
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Proof. The continuity is a consequence of Lemma 6.2.5 and the properties of universal covers. Since

m1(G) is discrete, the Euler number is thus constant on connected components of Hom(wy, G). O

Lemma 6.2.7. The Euler number is natural in the sense that if H is a subgroup of G, then the

following diagram commutes

| |

Hom(rm,, H) —— m(H)
Hom(rm,, G) —— m1(G).

Remark 6.2.8. In general, the Euler number eu: mo(Hom(m,, G)) — m1(G) is neither injective nor
surjective. It is for instance injective if G = PSL(2,R), but it fails to be injective for G = SL(2, R).
It is also not surjective in both cases.

If G is semi-simple and not of Hermitian type, then the Euler number is always surjective. This
follows from Theorem 6.2.9, since 71(G) = 71 (K), where K is a maximal compact subgroup of G.

If G is not of Hermitian type, then K is semi-simple.

6.2.2 Compact and complex Lie groups

In some cases, it’s possible to classify all the components of a representation variety using the Euler
number only. This is the case when the Euler number is an injective function. This works when G
is either a connected semisimple compact Lie group or a connected semisimple complex Lie group.
The first statement was proved by Atiyah-Bott and a proof of the second statement can be found
in [Li93, Thm. 0.1].

Theorem 6.2.9 ([AB83]). If G is a connected and compact semisimple Lie group, then the con-

nected components of Hom(my 0, G) are classified by m1(G) via the Euler number.

Theorem 6.2.10. If G is a connected and complex semisimple Lie group, then connected compo-

nents of Hom(mg 0, G) are classified by m1(G) via the Euler number.

6.2.3 The case of SL(n,R)

There is another case where the Euler number can be used to classify the connected components
of the representation variety, namely when G = PSL(2,R). In that case, the Euler number takes

values in 71 (PSL(2,R)) = Z. The classification is due Goldman who proved the following.

Theorem 6.2.11 ([Gol88]). When G = PSL(2,R), then eu: mo(Hom(m, 0, PSL(2,R))) — Z is
injective and its image is Z n [2 — 29,29 — 2]. In particular, Hom(mg o, PSL(2,R)) has 49 — 3

connected components.

It is worth pointing out that not all representation 7,9 — PSL(2,R) lift to representations in
SL(2,R). Actually, we have the following statement.
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Lemma 6.2.12. A representation ¢: w40 — PSL(2,R) lifts to a representation mqo — SL(2,R) if

and only if eu(¢) is even. In other words, the image of
ps: mo(Hom(my, SL(2,R))) — mo(Hom(my, PSL(2,R)))

is eu 1(2Z), where p: SL(2,R) — PSL(2,R) is the natural quotient map.

Proof. The Lie group SL(2,R) is a double cover of PSL(2,R) because Z(SL(2,R)) = {+I}. The
universal cover of PSL(2, R) therefore identifies with the universal cover SL(2,R) of SL(2,R). There
is a group homomorphism Z — Z/27 induced by

—_— —

m(PSL(2,R)) —> PSL(2, R) = SL(2, R) -~ SL(2, R).

—~———

Pick € € 7=1(—1I). Since € is in the kernel of SL(2,R) — PSL(2,R), there is z € m;(PSL(2,R))
that is mapped to € under 71 (PSL(2,R)) — Sﬂ(?,j%) This shows that the induced homomorphism
Z — Z/2Z is non-trivial and, hence, is the reduction of integers modulo 2.

Let ¢: 750 — PSL(2,R) be a representation. If eu(¢) is even, then ¢ lifts to ¢: m, o — SL(2,R)
defined by é(a;) := 71'((;@7)) and @(b;) := 71'((;5@7)), where Wcm,qm € SL(2,R) are any lifts of
b(a;), p(b;). Conversely, if ¢ lifts, then eu(¢) € p5 *(0) is an even number. O

A consequence of the proof of Lemma 6.2.12 is that the induced map 71 (SL(2,R)) — 1 (PSL(2, R)),
seen as a map Z — Z, is the multiplication by 2. This means that a representation ¢: 759 —
PSL(2,R) lifts if and only if eu(¢) is in the image of 71 (SL(2,R)) — m1(PSL(2,R)). We can go one
step further and ask for the number of connected components of Hom(m, o, SL(2,R)) that lie above

a given connected component of Hom(m, o, PSL(2,R)). We start with following general lemma.

Lemma 6.2.13. We denote by Ad(G) = G/Z(QG) the adjoint Lie group of a Lie group G. Assume
that Z(G) is finite and has cardinality m. Let C be a connected component of Hom(mg o, Ad(G))
that lifts to Hom(my 0, G). Then p~'(C) is a m?9-fold cover of C.

Proof. Any ¢ € C lifts in m?9 different ways since there are exactly m choices of lift for any of the

¢(a1)7¢(b1)7~">¢(ag)ﬂ¢(bg)' O

Corollary 6.2.14. Each of the two connected components of Hom(r, o, PSL(2,R)) that correspond

to Teichmiiller space lift to 229 distinct connected components of Hom(my o, SL(2,R)).

Proof. This follows form the fact that the Teichmiiller components inside the character variety of
(74,0, PSL(2,R)) are balls and hence simply connected. So, any finite degree cover of Teichmiiller

space must be trivial. O

Goldman proved each of the 2g — 4 connected components of Hom(m, o, PSL(2,R)) with Euler
number in 2Z n [4 — 2g,2g — 4] lifts inside the sane connected component of Hom(m, 9, SL(2,R)).

Theorem 6.2.15 ([Gol88]). The number of connected components of Hom(m, o, SL(2,R)) is 2291 +
2g — 3.

Before closing this section, let us mention that Hitchin later computed (using different methods)

the number of connected components in the case G = PSL(n,R) for n > 3.
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Theorem 6.2.16 ([Hit92]). If G = PSL(n,R), then Hom(my o, PSL(n,R)) has 3 connected compo-

nents if n is odd and 6 connected components if n is even.

If we are interested in determining which representations lift to SL(n,R), we can proceed as
follows. Note however that the question is trivial when n is an odd integer since in that case
SL(n,R) = PSL(n, R).

Lemma 6.2.17. Let n > 4 be an even number. It holds that

ZJ27 x )27, ifn=0 (mod 4),

m1(SL(n,R)) = Z/2Z, m(PSL(n,R)) = { 24 ifn=2 (modd).

Lemma 6.2.18. Letn > 4 be an even number. A representation ¢: mg o — PSL(n,R) lifts to a rep-
resentation wg 0 — SL(n,R) if and only if eu(¢) is in the image of m1(SL(n,R)) — w1 (PSL(n,R)).

The proof of Lemma 6.2.18 is analogous to that of Lemma 6.2.12.

6.3 Toledo number

The Toledo number was defined by Burger-Iozzi-Wienhard in [BIW10] for representations of surface
groups I' = 7, into Hermitian Lie groups G. When n > 1, then 7, is a free group, so every
representation 7y, — G will lift to the universal cover of G. In order to define a meaningful

invariant, we need to somehow take into account some boundary data of mg .

6.3.1 Hermitian Lie groups

Recall that a Hermitian Lie group G is a semisimple Lie group, with finite center and no compact
factors, such that its associated symmetric space X is a Hermitian manifold. The Ké&hler form
obtained from the unique G-invariant Hermitian metric of constant sectional curvature —1 on X
is denoted wy. The classical examples of Hermitian Lie groups include SU(p,q) and Sp(2n,R).
For instance, the symmetric space of SL(2,R) is the upper half-plane X = H on which SL(2,R)
acts by Mobius transformations. More considerations can be found in Appendix A. The group

of orientation-preserving isometries of H is PSL(2,R) and the associated Kéhler form is wy =
(dw A dy)/y?.

6.3.2 The area of a triangle

Let us now fix a Hermitian Lie group G with symmetric space X. Given three points z1, 22, 23 in
X, we denote by A(z1, 22, 23) the oriented geodesic triangle in X with vertices z1, 2o, z5. Its signed

area, computed with the area form associated to wx, is denoted by

[A(z1, 22, 23)] :=J wx.

A(z1,22,23)
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Fix a basepoint z € X and consider the function

c:GxGE->R (6.3.1)
(g1792) - [A(zaglzaQIQQZ)]-

Lemma 6.3.1. The function c satisfies the cocycle condition

(g2, 93) — (9192, 93) + c(g1,9293) — c(91,92) =0 (6.3.2)

for every g1, go, g3 € G, compare (1.3.2).

Proof. We need the following identity: if z1, 29, z3 are any three points in X, then, for any fourth
point w € X,
[A(z1, 22, 23)] = [A(21, 22, w)] + [A(22, 23, w)] + [A(zs, 21, w)]. (6.3.3)

The following picture should convince the reader of (6.3.3).

w
29 22
Z1 Z1
z3 Z3

In terms of triangle areas, the cocycle condition (6.3.2) is equivalent to

[A(2, 927, 92932)] + [A(z, 912, 9192937)]

being equal to
[A(2, 91922, 9192932)] + [A(2, 912, 91922)]-

Since g; € G acts by isometry on X and preserves the orientation, the latter is equivalent to

[A(912, 91922, 9192932)] + [A(z, 912, 9192932)]
being equal to
[A(2, 91927, 9192952)] + [A(2, 912, 91922)].
This is precisely formula (6.3.3) applied to 21 = z, 20 = g12, 23 = g1922 and w = g1g2932. O

Lemma 6.3.1 implies that ¢ defines a cohomology class x = [c] inside H?(G,R). The function
¢ is bounded because the area of a geodesic triangle in X is bounded. This means that the
cohomology class « gives a class k € Hb2 (G,R) in the second bounded cohomology group of G.

We recommend [L6h10] for an introduction to bounded group cohomology.

Lemma 6.3.2. The cohomology class k is independent of the choice of the basepoint z involved in

the definition of ¢ (whereas ¢ does depend on the point z).
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Proof. For the purpose of this proof, we will write ¢, instead of ¢ for the cocycle (6.3.1) to emphasize
the dependence on the basepoint z. Given another basepoint x € X, we prove that ¢, — ¢, is a
coboundary.

First, we develop ¢, (g1, 92) = [A(z, 912, g1922)] using (6.3.3) with w = g1x. We obtain

[A(z, 912, 912)] + [A(912, 91922, g17)] + [A(g1922, 2, 91.7)]
_[A(Iv ngl_lz)] + [A(‘Ta 27922)] + [A(gngZ’ 279158)]'

(g1, 92)

Now, we develop [A(g1922, 2, g12)] using (6.3.3) with w = x. This gives

[A(91922, 2, 17)] = [A(91922, 2, 2)] + [A(2, g1z, 7)] + [A(917, 91922, 7)]

—[A(z,2,91922)] — [A(z, 2, g12)] + [A(917, 91922, 2)].
Finally, we develop [A(g12, g1922, )] using (6.3.3) with w = g;goz. We have

[A(g17, 91922, 2)] = [A(917, 91922, 91927)] + [A(91922, T, g1922)] + [A(z, 917, 91927) ]
= [A(z, 2,95 '2)] — [A(z,2, 95 97" 2)] + calg1, 92)-

Consider the 1-cochain v, ,(g) = [A(z, 2, gz)]. It holds that
vz 2(01,92) = [A(x, 2, 12)] + [A(z, 2, g22)] — [A(x, 2, g1922)].
In particular, dv, .(g,971) = [A(z, 2, 92)] + [A(x, 2, g7 '2)]. The previous computations show that
(91, 92) = ca(91,92) = 00,291, 92) — 00z 2 (91,97 ") + Q020955 97 ") = 002w (91, 97)-
We conclude as predicted that ¢, — ¢, is a coboundary. O

6.3.3 Group cohomological definition

Given a representation ¢: 7, — G, we can pull back & to the class ¢*k inside HZ (7, R). An

important property of the bounded cohomology of the group 7, is that the map
J: Hg(ﬂ'g,na a7Tg,n7R) d Hbz(ﬂg,m R) (6.3.4)

from the long exact sequence in cohomology for the pair (7Tg7n, 671'9,,1) is an isomorphism, see [Loh10,
Thm. 2.6.14]. Recall finally that integrating along a fundamental class [7g.,,, 07 ] gives an iso-

morphism H*(7y p, 07y 5, R) = R.

Definition 6.3.3 (Toledo number, [BIW10]). Let G be a Hermitian Lie group. The Toledo number

of a representation ¢: 74, — G is the real number defined by

Tol(¢) = j_1(¢*"$) ~ [Tgn,s 0T g,n]-
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6.3.4 Properties

The first thing to point out is that the Toledo number is a generalization of the Euler number for
representations of closed surface groups into PSL(2,R). This is explained in [BIW10]. Now, we

proceed to other basic properties of the Toledo number.

Lemma 6.3.4. The volume is invariant under the conjugation action of G on Hom(wg ,,G) and
thus descends to a function
Tol: Hom(7y ,, G)/Inn(G) — R.

Proof. Consider the cocycle ¢ defined in (6.3.1). The diagonal conjugation action of an element
g € G on G x G amounts to a change of basepoint in the definition of c¢. Indeed, if ¢, denotes
the cocycle (6.3.1) defined using the basepoint z € X, then it holds that c.(gg19~ %, gg29"") =
cg-1(91,92). Since, by Lemma 6.3.2, the cohomology class & is independent of the choice of the

basepoint defining ¢, we conclude that the volume is an invariant of conjugation. O

The main properties of the volume are the following. We denote by x(X, ) the Euler charac-

teristic of X 5.

Theorem 6.3.5 ([BIW10]). The volume, seen as a function Tol: Hom(mg,,,G) — R, has the

following properties:
1. Tol is a continuous function.
2. Tol is locally constant on each relative representation variety.

3. (Milnor-Wood inequality) Tol is bounded:
| Tol | < |x(3g,n)| rank(G),
moreover, if n > 0, then Tol is a surjective function onto the interval

[IX(Xg.n) rank(G), [x(Xg.n)| rank(G)] .

4. Tol is additive: if X, is separated by a simple closed curve into two surfaces S1 and Sa,

then, for every ¢ € Hom(m, p, G),
vol(¢) = vol(¢ 1+, (s,)) + vol(dl 1, (s,))-

The first and second statement in Theorem 6.3.5 imply that the set of representations of a given
Toledo number forms a collection of connected components of each relative character variety. In
general, there is no reason for this collection to contain a unique connected component. Recall that
in the case of a closed surface group and G = PSL(2, R), the Euler number completely distinguishes
the connected components of the character variety [Gol88].

The Toledo number has an interesting symmetry that comes from reversing the orientation of
X. By definition, for each z € X, there exists an orientation-reversing isometry s, of X that

fixes z. This gives an involutive outer automorphism o: G — G defined by o(g) = s, o g o s,.
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Indeed, if g € G is an orientation-preserving isometry of X, then s, o g o s, is again an orientation-
preserving isometry of X, hence belongs to GG. Using the functoriality of representation varieties

(see Lemma 2.1.7), the involution o descends to an analytic involution
o: Hom(ny ,, G) = Hom(7m, p, G).

Lemma 6.3.6. The involution o satisfies the following properties:

1. o preserves conjugacy classes of representations, and therefore descends to an involution

o: Hom(my pn, G)/Inn(G) — Hom(my ,,, G)/Inn(G).

2. o depends on the choice of z € X only up to conjugation, in particular, & is independent of
the choice of z € X.

3. For any representation ¢ € Hom(mg ,, G) it holds that
Tol(o(¢)) = — Tol(¢).

Proof. The first assertion follows from o(g¢g~') = (s.0g0s.)a(¢)(s.09 1 0s.) and the observation

that s, o g o s, is orientation-preserving. If z’ € X is a second point, then it holds that s, o

g oSy = (8 08,)(s,0908,)(s, 0 8,), which proves the second assertion because s, o s, is
orientation-preserving. Finally, note that (o(¢))*k = ¢*(0*k) and 0*k = —k because s, reverses
the orientation of X. O

Example 6.3.7. Consider the case G = SL(2,R). An example of orientation-reversing isometry

of the upper half-plane is given by z — —Z. It fixes the imaginary axis. The associated involutive

1 0
outer automorphism o of SL(2,R) is given by conjugation by the matrix (0 ) of determinant

—1.

The involution ¢: Hom(w, ,,G) — Hom(m,,,G) maps the relative representation variety
Home(7g,n, G) to the relative representation variety Homgc)(7g,,G). Since G is of Hermitian
type, it is by definition semisimple, hence quadrable. The Goldman symplectic form built from the
Killing form on g is invariant under o. This is a consequence of the fact that the Killing form is in-
variant under automorphisms of g. In this case, the involution ¢: G — G induces an automorphism

Do:g—g.

6.3.5 Alternative definition via rotation numbers

A downside of Definition 6.3.3 is the lack of computability. Given a representation ¢: w4, — G,
. This

is a non-trivial task in general. There is an alternative definition of the volume of a representation

computing j~!(¢* k) means finding a primitive in H'(0;7,,, R) for each restriction ¢*~x Moiey

that makes it easier to compute. It is based on a notion of rotation number that generalizes
the classical notion of rotation number for homeomorphisms of the circle described for instance

in [GhyO1]. The rotation number, as introduced by Burger-lozzi-Wienhard, is a function p: G —

81



R/Z that lifts to a quasimorphism p: G — R of the universal cover of G. We explain the construction
in the case G = PSL(2,R) and refer the reader to [BIW10, §7] for the general construction. The

main result is the following.

Theorem 6.3.8 ([BIW10]). Let 5: Tgn — G be a group homomorphism that covers ¢. Then
Tol() = = Y 7 (8(e)
i=1

where ¢; are the generators of g, from presentation (1.4.1).

—~———

Let’s study the case G = PSL(2,R). We fix a topological group structure on PSL(2, R) by fixing
a unit e in the fibre over the identity. The action of PSL(2,R) on the circle R/Z (see Lemma A.2.1)
gives a group homomorphism PSL(2,R) — Homeo"(R/Z). The classical rotation number is a
function rot: Homeot(R/27Z) — R/Z defined as follows. Given f € Homeo™ (R/Z), lift it to an

orientation-preserving F': R — R, uniquely defined up to translation by an integer. The group of

all such lifts is denoted by I-che/oJr(R/QWZ). We can then compute the number
F'(x) —
Rot(F) := lim fe)-a
n—0 n

where z is any real number. The limit always exists and is independent of x. The rotation
number of f is then defined to be the projection of Rot(F') inside R/Z. Composing the map
PSL(2,R) — Homeo™" (R/Z) with rot: Homeo™ (R/27Z) — R/Z gives the rotation number

p: PSL(2,R) - R/Z.
The action of PSL(2,R) on R/Z lifts to a faithful action of PS/IYQTR) on the universal cover
R/Z, defining a group homomorphism f’ﬁ;(%R) - I—f(;n—e/oJr(R/%rZ). When we compose it with

Rot: I-i(—)E(;oJF(R/QWZ) — R, we get a quasimorphism

p: PSL(2,R) > R.

It can also be described as the unique lift of p: PSL(2,R) — R/Z satisfying p(e) = 0.
We can describe p more explicitly by considering conjugacy classes in PSL(2,R). Recall that, if £
denotes the set of elliptic conjugacy classes in PSL(2, R), then there is a well-defined angle function

9: & — (0,27), see Lemma A.2.5. It extends to an upper semi-continuous function J: PSL(2,R) —
[0, 27] defined by

9(A), if A is elliptic,
J(A) =1 0, if A is hyperbolic or positively parabolic, (6.3.5)
2, if A is the identity or negatively parabolic.

The notions of positively and negatively parabolic refer to the two conjugacy classes of parabolic
elements in PSL(2, R) represented by (A.2.6). The definition of the function ¥ is ad hoc, however
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it satisfies ¥ = p modulo 27. In particular, the correction term

k(¢) = (;ﬁ Z I(P(ci)) — Z 5(53(@))) (6.3.6)

is an integer called the relative Euler class of ¢. It was introduced by Deroin-Tholozan in [DT19].
The definition of the relative Euler class very much depends on the choice of the extension ¥ of 1.

Theorem 6.3.8 implies
k(¢) = Tol(¢) + Y, 9(¢(c:).
i=1

The range of the relative Euler class over Hom(n, ,,, G) was studied in [DT19], where the following

was proved.

Proposition 6.3.9 ([DT19]). Let ¢: my,, — PSL(2,R) be a representation. Then

K(9) < max {|x<zg,n)|7 =) ﬂ(qb(ci))} .

™4

Remark 6.3.10. Observe that, as soon as g = 1, then |x(Zg,)] = n = 5= 27", 9(¢(c;)) and

thus the inequality k(¢) < |x(X4,n)| prevails. In the case g = 0, it is however possible that
% > 9(p(ci)) > |x(Zo,n)]- The representation which satisfy the latter have very interesting

properties, such as being totally elliptic. For further considerations, the reader may consult [DT19]
or [Mar21].
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Chapter 7
Mapping class group dynamics

Overview

This chapter is an expansion on some results and remarks from Section 2.2 on the mapping class
group action on character varieties. We start by reminding the reader of some basic properties of
the Aut(T")-action on Hom(T', G) in Section 7.1. We then proceed with a reminder on mapping class
groups in Section 7.2 and conclude the chapter with some basic properties of the mapping class

group action on character varieties 7.3.

7.1 Remarks on the Aut(l')-action

Recall that the Aut(T')-action on the representation variety Hom(T', G) descends to an action of
the outer automorphisms group Out(T") on the quotient Hom(T', G)/Inn(G). This action preserves
the analytic/algebraic structure of Hom(T', G) by Lemma 2.2.1. When I" = 7, ,, is a surface group,
then Out(m,,) contains the pure mapping class group of the surface ¥,, as a subgroup, com-
pare Example 2.2.3. The induced action is the so-called mapping class group action on character
varieties.

Let us start with some general considerations on the Aut(I')-action on Hom(I',G) and then

specialize to the case of a surface group.

Lemma 7.1.1. The Aut(T')-action on Hom(T', G) preserves the subspaces of (very) regular, reduc-

tive, irreducible, good and (almost) Zariski dense representations.

Proof. All these particular notions of representations are defined in terms of the image of the
representation. However, for any 7 € Aut(I") and ¢ € Hom(T', G), it holds that ¢(T") = (¢por)(T'). O

A consequence of Lemma 7.1.1 is that the Out(T')-action on Hom(T', G)/Inn(G) restricts to an
action of Out(I') on the GIT character variety Rep®'™ (', @) (by Theorem 4.4.6, assuming G is a

reductive complex algebraic group) and on the analytic character variety Rep™ (my 0, G).
Lemma 7.1.2. The Aut(T")-action on Hom(I', G) preserves closed orbits.

Proof. This is an immediate consequence of Lemma 2.2.1. O
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In particular, Lemma 7.1.2 implies that the Aut(T")-action on Hom(T', G) induces an Out(T')-
action on the 7; character variety Rep”! (mg,0,G). It is not clear to the author whether there is an

induced action of Out(I') on the Hausdorff character variety in general.

7.2 Recap on mapping class groups

The mapping class group of a closed and oriented surface ¥, is the group of isotopy classes of
orientation-preserving homeomorphisms of ¥, 9. For punctured oriented surfaces ¥, ,, the pure
mapping class group is defined to be the group of isotopy classes of orientation-preserving homeo-
morphisms of 3, , that fix each puncture individually. It contrasts with the mapping class group
where punctures can be permuted. Our notation for the pure mapping class group will be Mod(%, )
and the isotopy class of an orientation-preserving homeomorphism f: ¥,, — X,, is denoted
[f] € Mod(X,,,). The group law is given by composition and the identity element correspond to

the identity homeomorphism.

Theorem 7.2.1. The mapping class group is finitely presented. Generators can be chosen to be

Dehn twists along simple closed curves on X .

More details about Theorem 7.2.1, including proof and explicit generating family, can be
found in [FM12, §4]. A homeomorphism f of ¥, , induces a group isomorphism (24 ,,z) —
71(Zg n, f(z)). After choosing a continuous path from z to f(z), we get an induced automorphism
of the fundamental group of ¥, ,, (that depends up to conjugation on the choice of the path). This
gives a group homomorphism

Mod(%,,,) = Out(mgn)-

The Dehn—Nielsen Theorem says that it is injective and provides a description of its image.

Theorem 7.2.2 (Dehn-Nielsen Theorem). The mapping class group Mod(X, ) is an index two
subgroup of Out(my o) for g = 1 (and is trivial for g = 0). Moreover, if ¥4, has negative Euler
characteristic, then the mapping class group Mod(2,,,) is an index two subgroup of Out™(m, ),
where Out™(my ) is the subgroup of Out(mg,,) that consists of the outer automorphisms that act by

conjugation on each of the generators c; of my , (for the presentation (1.4.1)).

We refer the reader to [FM12, §8] for more considerations on the Dehn-Nielsen Theorem. The-
orem 7.2.2 implies that the Aut(m o)-action on the representation variety Hom(mg o, G) induces an
action

Mod(X3,,0) & Hom(mgo,G)/Inn(G).

The action is analytic/algebraic on the regular part of the quotient by Lemma 2.2.1. In the case of
a punctured surface, the action of Aut(m, ) on Hom(m, ,,G) restricts to an action of Aut*(m, )

on any relative representation variety Home (7, G). This gives, by Theorem 7.2.2, an action
Mod(%,,,) & Home(mg n, G)/Inn(G),

for any choice of conjugacy classes C € (G/G)™. These two actions are what we call the mapping

class group action on character varieties.
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7.3 Basic properties

The first property is that the mapping class group action preserves the Goldman symplectic form.
We start with the case of a closed surface. Let [f] € Mod(X,) and take any 7 € Aut(mg,)
that lies over the image of [f] inside Out(my o). We choose the generator [mg o] of Ha(my0,Z)
that corresponds to the orientation of the surface ¥,0. Since f is orientation-preserving, it
holds that 74[mg0] = [mg0]. For any ¢ € Hom(myo,G), the automorphism 7 induces a map
(dT)g: ZM(7g0,80) = 2 (74,0, 8p0r), v > voT, on the Zariski tangent spaces to the representation

variety.

Lemma 7.3.1. If wg denotes the Goldman symplectic form from Definition 5.1.2, then, for any

¢ € Hom(my 0, G), the following diagram commutes

(wg)
Zl(ﬂ—g,Oagtﬁ) X Zl(ﬂ—g,07g¢) # R

(dr)gx(d7)¢

L L (wg)por
zZ (779,0’9¢OT) X Z (779,0’90507')

In other words, it holds that

T*WQ = Wwg.

Proof. Let B: g x g — R be the pairing used in the definition of wg. For any v,w € Z (740, g¢),

we have
(wg)gor(voT,wor)=BwoT,woT) ~ [mg0]
= B(v,w) —~ T«[mg0]-
Since Ty [7mg,0] = [7g,0], we conclude (wg)gpor(voT,woT) = (wg)e(v, w). O

As a consequence of Lemma 7.3.1, we obtain that the Mod(X, ¢)-action on the quotient Hom(mg o, G)/Inn(G)
preserves the Goldman symplectic measure vg from Definition 77.
The situation is similar for punctured surfaces. Let [f] € Mod(X,,,,) and take any 7 € Aut* (7 ,)
that lies over the image of [ f] inside Out*(mg,,). The generator |7y, 07g ] of Ha(7g n, 07y n, Z) is
again chosen to correspond to the orientation of the surface 3, ,,. Similarly as before, 7y[mg p, 07y ] =
[7g.ns 0T g.n]. Moreover, the map (d7) restricts to toamap (d7)g: Zpu,(Tg.n, 86) = Zpar(Tg.n, Gpor)-
Indeed, note that if v(c;) = & — Ad(é(c;))é and 7(¢;) = gicig; ', then

(vor)(ci) = (v(gi) + Ad(¢(9:))&) — Ad ((¢ o 7)(c:)) (v(g:) + Ad(d(9:))&:)-

Lemma 7.3.2. If wg denotes the Goldman symplectic form from Definition 5.3.3, then, for any
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¢ € Home(my p, G), the following diagram commutes

(wg)
2 r(Tgms 86) X Zher (Mg ms 8g) —————— R

par par

(dr)px(dT)¢

1 1 (wg)por
Zpa'r‘ (7(-977747 g¢7°7) X Zpar (Trg”fh g¢0T)

In other words, it holds that

T*OJg = Wwg.

The proof is analogous to the proof of Lemma 7.3.1.
The second property is that the mapping class group action also preserves the Toledo number
of a representation. As before, let [f] € Mod(X,,,) and take any 7 € Aut*(m,, ) that lies over the

image of [f] inside Out™(my ). Again, Ty [mgn, 0mgn] = [Tg.n, 0gn].

Lemma 7.3.3. Let G be a Hermitian Lie group. For any ¢ € Home(mg ., G), it holds that
Tol(¢ o ) = Tol(¢).
Proof. We compute directly from Definition 6.3.3 that

Tol(poT) = j71 ((‘77S oT)*K) ~ [7g,n: 0mg,n]
= j_l(T*(b*I{) ~ [Tgn, 0mg n]

= j_l(qb*n) ~ T[Tgm, 0Tg 0]

We conclude by using 74[7g n, 07g.n] = [Tg,n, 0T n]- O
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Appendix A
The group PSL(2,R)

A.1 Generalities

We introduced SL(2, R) as the subgroup of SL(2, C) consisting of real matrices in Section 1.2.2. The
group SL(2,R) is Zariski dense inside SL(2,C) by Theorem 1.2.5 (actually, even the group SL(2, Z)
is Zariski dense in SL(2, C)). The maximal compact subgroup of SL(2,R) is SO(2). Note that SO(2)
is Zariski closed inside SL(2, R) by Theorem 1.2.6, but the Zariski closure of SO(2) inside SL(2, C)
is SO(2,C). The center of SL(2,R) is Z(SL(2,R)) = {£I}. The center-free quotient SL(2,R)/{£I}
is the adjoint group of SL(2,R) and is traditionally denoted by PSL(2,R). If A € SL(2,R), then we
will denote by +A its projection inside PSL(2,R). Even if PSL(2,R) is not group of 2 x 2 matrices,

it turns out that it can be realized as a liner Lie group of x3 matrices.

Lemma A.1.1. The group PSL(2,R) can be identified with the conjugate of the matrixz group

SO(2,1)° that consists of special linear transformations of R® preserving the Hermitian form y*—xz

a? 2ab b2
a b
+ ( > — | ac ad+bc bd

d
¢ 2 2cd d?

via the map

Lemma A.1.1 highlights the hyperbolic nature of PSL(2,R). More precisely, PSL(2,R) can be
identified with the group of orientation-preserving isometries of the upper half-plane H = {z € C :

Im(z) > 0}. It acts on H by Mé&bius transformations

i(a b) e az—}-b'
c d cz+d

Lemma A.1.2. The group PSL(2,R) has the topology of an open solid torus.

Proof. The transitive action of PSL(2,R) on H extends to a transitive action on the unit tangent
bundle T'H. It is not too hard to see that the stabilizers of points for the action of PSL(2,R) on
T'H are trivial. We conclude that PSL(2,R) and T'H are homeomorphic. O

88



A.2 Conjugacy classes

The action of PSL(2,R) on H extends to the boundary JH.

Lemma A.2.1. The action of PSL(2,R) on 0H is isomorphic to the projective action of PSL(2,R)
on RP' = R?/R*.

Proof. Identifying 0H = R U {00}, one can define a homeomorphism f: dH — RP! by z +— [1 : z]
and o0 — [0 : 1]. We claim that f conjugates the two actions of PSL(2,R). Indeed, it is sufficient to
compare stabilizers, and it is easy to see that the stabilizers of [1 : 0] € RP' and of 0 € dH coincide

with the subgroup of upper triangular matrices in PSL(2, R). O

Definition A.2.2. The open subspace of PSL(2,R) consisting of elements whose trace in absolute
value is smaller than 2 is called the subspace of elliptic elements of PSL(2,R). It is denoted
£ c PSL(2,R). Equivalently, an element of PSL(2,R) is elliptic if and only if it has a unique fixed
point in H.

a

Lemma A.2.3. I[f A=+ (
c

b

d) is elliptic, then b # 0 and ¢ # 0.

Proof. If b = 0 or ¢ = 0, then det(A) = ad = 1. So, Tr(A)? = (a + d)? > 4ad = 4 and A is not
elliptic. ]

b
Let A=+ [ d) be an elliptic element of PSL(2,R). The association of A to its unique fixed
c

point fix(A) € H defines a map fix: & — H.

Lemma A.2.4. The unique fixed point of A is

a—d /A= (a+d)?
fix(A) = . A21
X(A) = — = +i TR (A.2.1)

and the map fix: &€ — H is analytic.

Proof. The first assertion is a straightforward computation. Since ¢ # 0 by Lemma A.2.3, the map
fix: £ — H is analytic. O

The elliptic elements of PSL(2,R) that fix the complex unit ¢ € H are of the form

roty = + ( co.s(19/2) sin(ﬁ/Q)) (A2.2)
—sin(¥/2) cos(¥/2)

for ¥ € (0,27). Every A € £ is conjugate to a unique roty(4y. This defines a function 9: £ — (0, 27).
The number ¥(A) € (0,2n) is called the angle of rotation of A.

Lemma A.2.5. The angle of rotation of A is

¥(A) = arctan (_C Ld\/él —(a+ d)2> +e(A), (A.2.3)

le| (a+d)2 =2
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where
0, if(a+d)?>2and(a+d)=< >0,

lc]
e(A)=9 7 if(a+d)? <2,
2, if (a+d)? > 2 and (a +d)T< < 0.

lel

Moreover, the function 9: & — (0,27) is analytic.

Proof. The number ¥(A) can be computed as the complex argument of the complex number

_(latd? N . cVi-(atd)?
z:ﬁXA_< . 1) (+d)|c| 5 . (A.2.4)

%
dz

Observe that the imaginary part of (A.2.4) vanishes if and only if a + d = 0, in which case its
real part is equal to —1. This means that the complex number defined by (A.2.4) takes values
inside C \ Ryq. If we think of the complex argument of a number inside C \ Rx( as a function

C \ Ry — (0,27), then it is analytic. This shows that ¥: £ — (0, 27) is an analytic function. [

Lemma A.2.6. The map
(fix,): € - H x (0, 27)

is an analytic diffeomorphism that identifies the subset of elliptic elements in PSL(2,R) with an
open ball.

Proof. We explained above that the map (fix, ) is analytic. The inverse map sends a point z =

z+1i-y € H and an angle 9 € (0,27) to the elliptic element

roty(z) = + (cos(ﬁ/Q) — xy~Lsin(9/2) (z2y~! + y) sin(9/2) ) . (A25)
N —y~Lsin(9¥/2) cos(9/2) + zy~tsin(9/2)
Indeed, an immediate computation gives
_ —2zy 'sin(¥/2) . 2sin(9/2)
fix(roto(2)) = = Srgnw/2) T 2y Tem(9)2)
=T+,
and
(roty(2)) = arg <<‘mg9/2) _ 1) i+ (2008(9/2)) - (=1) - W)
= arg(cos()) + isin(1)))
= . O

Definition A.2.7. The elements of PSL(2,R) whose trace in absolute value is equal to 2 are called
parabolic. Parabolic elements are those that have a unique fixed point of the boundary of H. There

are two conjugacy classes of parabolic elements represented by

1 1 1 0
=4 d T =4 . A.2.6
par + (O 1) an par + (1 1) ( )
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The elements conjugate to par™ are called positively parabolic and those conjugate to par™ negatively
parabolic. Each conjugacy class of parabolic elements is an open annulus whose closures intersect
at the identity.

The elements of PSL(2,R) with a trace larger than 2 in absolute value are called hyperbolic.
Hyperbolic elements have precisely two fixed points on the boundary of H. A hyperbolic element

of PSL(2,R) is always conjugate to a diagonal element

A0
h =+ ,
YPA (O >\1>

for a unique A > 0. Hyperbolic conjugacy classes are open annuli.

Elliptic, parabolic, and hyperbolic conjugacy classes foliate PSL(2, R) in a way that is illustrated
on Figure A.l.

Figure A.1: The elliptic conjugacy classes are drawn in green. They foliate an open ball into disks.
The open ball is bounded by the two parabolic conjugacy classes which have the shape of two red
cones joined at the identity. The hyperbolic conjugacy classes foliate an open solid torus, bounded
by the red cones, into blue annuli.

The next lemma describes the centralizers of elements of PSL(2, R) according to their conjugacy
class.
Lemma A.2.8. The centralizers of roty, hyp, and par™ are given by

1. Z(roty) = {rotg : 6 € [0,2m)} = PSO(2,R).

2. Z(hypy) = {hyp, : t > 0} = R.o.

3. Z(part) = {((1) T) :xeR} ~ R.

Tt is worth noticing that the centralizer of an element of PSL(2, R) always consists of the identity
element and of elements of the same nature (i.e. elliptic, parabolic, and hyperbolic). In particular,
two elements of PSL(2,R) different from the identity commute if and only if they have the same
set of fixed points in H v JH.
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