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Foreword

Michel Bertrand: Vous savez, dans

notre métier, il vaut mieux passer pour

un fou que pour un imbécile.

Commissaire Juve: Eh ben alors là,

vous risquez pas la camisole, vous !

Fantomas se déchaine

1965

These notes1 are an extended version of a series of mini-courses that I gave in the spring of

2022 at the KIT Karlsruhe and at the University of Heidelberg and in the spring of 2024 at Seoul

National University. The main objective is to introduce the notions of representation varieties and

character varieties from the perspective of both differential geometry and algebraic geometry. It is

common to encounter different definitions of character varieties in the literature, depending on each

author’s “favourite quotient” which varies depending on the context and the applications. I will

try to cover as many of these definitions as possible and explain how they relate to each other. The

notes also aim at providing the reader with an introduction to the symplectic structure of surface

groups representations which I will formulate in therms of group cohomology. Along the way, I also

intend to elaborate on mapping class group dynamics on character varieties, as well as on some

invariants, like the Euler or Toledo numbers, used to discriminate their connected components.

I will try as much as possible to provide precise references to the literature to help the readers

find original statement and proofs. There are a couple options in the literature where one can

find a broad introduction to character varieties (sometimes focusing on surface group represen-

tations; sometimes focusing on the algebraic aspects of the theory). These include, for instance,

Bradlow-Garćıa–Prada-Goldman-Wienhard [BGPGW07], Labourie [Lab13], Marché [Mar22], Mon-

dello [Mon16, §2], and Sikora [Sik12].

I acknowledge contributions by Jacques Audibert, Fernando Camacho Cadena, Xenia Flamm,

Maximilian Schmahl, Irene Seifert, Nicolas Tholozan who read the first version of the notes as

part of my PhD thesis and shared valuable comments. I am very grateful to all of them. This

1version 1.3, compiled on June 1, 2024
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manuscript also benefited from many informal, nevertheless inspiring, discussions with colleagues

and collaborators. I am particularly grateful to Peter Albers, Brian Collier, James Farre, Bill

Goldman, Antonin Guilloux, Sean Lawton, Gye-Seon Lee, Julien Marché, Beatrice Pozzetti, Max

Riestenberg, Andy Sanders, Anna Wienhard, and Maxime Wolff.
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Chapter 1

Background

Overview

The first of two ingredients that we need to define a character variety is a target group. This

group essentially carries the topological structure of the character variety. It will always be a Lie

group, sometimes even an algebraic group. We start by recalling these notions and their properties

in Section 1.1 and 1.2. The second ingredient is a finitely generated group, which will often be a

surface groups—a notion that we introduce below in Section 1.4. Finally, we also provide a fairly

detailed recap on group cohomology from the point of view of the bar complex in Section 1.3.

1.1 Lie groups

This section is short recap on the notions of Lie groups, as well as (semi)simple, reductive, and

quadrable Lie groups.

1.1.1 Generalities

Definition 1.1.1. A Lie group G is a real smooth manifold with a group structure for which the

operations of multiplication and inverse are smooth maps. A Lie group is called a complex Lie

group if it has the structure of a complex manifold and the group operations are holomorphic.

Lie groups always admit an analytic atlas, unique up to analytic diffeomorphism, such that

multiplication and inverse are analytic maps1. Lie groups are not necessarily connected. We

will denote by G� the identity component of G. The centralizer of a subset S � G is denoted

ZpSq :� tg P G : gsg�1 � s, @s P Su. It is a closed subgroup of G, hence a Lie subgroup of G. The

center of G is the Lie subgroup ZpGq � G.

Example 1.1.2 (Linear Lie groups). The standard examples of Lie groups are groups of invertible

n � n matrices such as GLpn,Rq and GLpn,Cq, and all their closed subgroups, called linear Lie

groups. These include the subgroups of determinant-1 matrices which we denote SLpn,Rq and

SLpn,Cq and their subgroups SOpnq and SOpn,Cq, SUpp, qq, or Spp2n,Rq. The groups GLpn,Cq,
SLpn,Cq, and SOpn,Cq are also examples of complex linear Lie groups.

1This is a consequence of the Campbell-Hausdorff formula, see e.g. [Ser06, Part I, Chap. IV, §7-8].
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The quotient of a Lie group G by its center ZpGq is also a Lie group called the adjoint Lie group

of G. The adjoint Lie groups of linear groups are usually denoted by adding a P in front of the Lie

group’s name. For instance, the adjoint Lie group of SLpn,Rq is written PSLpn,Rq.2

The Lie algebra of a Lie group G is denoted g. Most of the time, we will think of g as the tangent

space to G at the identity. In various places we will make use of the Lie theoretic exponential map

exp: g Ñ G, which, in the case that G is a linear Lie group, is the matrix exponential map. The

adjoint representation of G on g is denoted by Ad: GÑ Autpgq and is defined by

Adpgqpξq :�
d

dt

����
t�0

g expptξqg�1, g P G, ξ P g.

By taking the derivative of Ad at the identity, we obtain the adjoint representation of g which is

commonly denoted by ad: g Ñ Endpgq. If r�,�s : g� g Ñ g denotes the Lie bracket operation on

g, then it holds that

adpξ1qpξ2q � rξ1, ξ2s, ξ1, ξ2 P g.

The kernel of the ad-representation is called the center of g and is denoted by zpgq :� Kerpadq. The

center of g can also be interpreted as the Lie algebra of ZpGq—the center of G.

1.1.2 Simple, semisimple, and reductive Lie groups

We will say that a Lie algebra g is

� simple if it is not abelian and if its only proper ideal is the zero ideal. Since ideals of g are in

one-to-one correspondence with sub-representations of its adjoint representation, g is simple

if and only if its adjoint representation is irreducible and g is not a one-dimensional abelian

Lie algebra.

� semisimple if it has no nonzero abelian ideals. Equivalently, a Lie algebra is semisimple if it

is a direct sum of simple Lie algebras [Bou98, Chap. I, §6.2, Cor. 1]. By Cartan’s criterion, g

is semisimple if and only if its Killing form

K : g� gÑ R

pξ1, ξ2q ÞÑ Trpadpξ1q adpξ2qq

is non-degenerate [Bou98, Chap. I, §6.1, Thm. 1].

� reductive if it is the direct sum of an abelian and a semisimple Lie algebra. Equivalently, g

is reductive if and only if its adjoint representation ad: gÑ Endpgq is completely reducible3,

which is further equivalent to g admitting a faithful, completely reducible, finite-dimensional

representation [Bou98, Chap. I, §6.4, Prop. 5].

We call a connected Lie group simple, semisimple or reductive if its Lie algebra is simple,

semisimple or reductive, respectively. Simple Lie groups are semisimple and semisimple Lie groups

2For more information on PSLp2,Rq, the reader is referred to Appendix A.
3Recall that a completely reducible representation is a representation that decomposes as a direct sum of irreducible

representations. Such representations are sometimes called semisimple.
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are reductive. The groups SLpn,Rq for n ¥ 2, Spp2n,Rq and SUpp, qq for p� q ¥ 2 are simple. The

group SOpnq� is simple for n ¥ 3, n � 4 and semisimple for n � 4. In contrast, the group GLpn,Rq�

is not semisimple for any n ¥ 1 (its Killing form is degenerate). It is however reductive, because

its Lie algebra is the direct sum of the simple Lie algebra of traceless matrices and the abelian Lie

algebra of diagonal matrices. It is worth observing that a connected linear Lie group G � GLpn,Rq
is reductive if and only if the trace form

Tr: g� gÑ R

pξ1, ξ2q ÞÑ Trpξ1ξ2q

is non-degenerate. This can be seen as a consequence of the classification of semisimple Lie algebras

and [Bou98, Chap. I, §6.4, Prop. 5]. The previous statement also holds for connected linear Lie

groups G � GLpn,Cq. If the (in this case, complex-valued) trace form is non-degenerate, then so is

its real part ℜpTrq : g� gÑ R which gives a non-degenerate, symmetric, Ad-invariant, real-valued

bilinear form.

1.1.3 Quadrable Lie groups

An important class of Lie groups for the purpose of these notes are those that admit a non-

degenerate, symmetric and Ad-invariant pairing on their Lie algebra. Such Lie groups carry different

names throughout the literature, see [Ova16] for an overview. We opt for the name quadrable.

Definition 1.1.3 (Quadrable Lie groups). A Lie group G is called quadrable if there exists a

bilinear form (also called pairing)

B : g� gÑ R

which is non-degenerate, symmetric and Ad-invariant.

Quadrable Lie groups are common among the standard Lie groups. For example, all semisim-

ple Lie groups, and more generally all reductive Lie groups, are quadrable. An example of a

non-degenerate, symmetric and Ad-invariant bilinear form on a reductive Lie algebra is given by

taking the Killing form on the semisimple part and any non-degenerate, symmetric bilinear form

on the abelian part. Alternatively, one may consider the trace form associated to a faithful, finite-

dimensional representation4 of g.

Example 1.1.4. For instance, SLp2,Rq is quadrable. We usually chose to work with the pairing

given by the trace form: Tr: sl2R�sl2RÑ R, pξ1, ξ2q ÞÑ Trpξ1ξ2q. The trace of a matrix is invariant

under conjugation, so the trace form is Ad-invariant. In the basis

sl2R �

C�
1 0

0 �1

�
,

�
0 1

0 0

�
,

�
0 0

1 0

�G
,

the trace form is given by the pairing 2x1x2�y1z2�z1y2. It is clearly symmetric and non-degenerate.

Actually, in this case, the pairing Tr: sl2R� sl2R has signature p2, 1q.

4The trace form of a representation ρ : g Ñ GLpn,Rq is the symmetric bilinear form g � g Ñ R given by
pξ1, ξ2q ÞÑ Trpρpξ1qρpξ2qq. For instance, the Killing form is the trace form of the adjoint representation.
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Example 1.1.5. The Heisenberg group H is an example of a non-quadrable Lie group. Recall that

H is defined to be the group of strictly upper triangular 3� 3 real matrices:

H �

$'&'%
���1 a b

0 1 c

0 0 1

��
: a, b, c P R

,/./- .

The Lie algebra h of H is generated by the three matrices

X :�

���0 1 0

0 0 0

0 0 0

��
, Y :�

���0 0 0

0 0 1

0 0 0

��
, Z :�

���0 0 1

0 0 0

0 0 0

��
.

A simple computation shows that Z commutes with any element of H. Further

Ad

���1 0 0

0 1 1

0 0 1

��
pXq � X � Z, Ad

���1 0 0

0 1 1

0 0 1

��
pY q � Y, (1.1.1)

and

Ad

���1 1 0

0 1 0

0 0 1

��
pXq � X, Ad

���1 1 0

0 1 0

0 0 1

��
pY q � Y � Z. (1.1.2)

So, because of (1.1.1), any symmetric and Ad-invariant bilinear form B : h� hÑ R, must satisfy

BpX,Zq � BpX � Z,Zq and BpX,Y q � BpX � Z, Y q

which implies BpZ,Zq � 0 and BpY,Zq � 0. Moreover, because of (1.1.2), it must also satisfy

BpX,Y q � BpX,Y � Zq

and thus BpX,Zq � 0. This shows that B is degenerate.

If reductive Lie groups are always quadrable, it is not true that every quadrable Lie group is

reductive. This was already pointed by Goldman in [Gol84, Footnote p. 204]. Here is an example.

Example 1.1.6. Let G be the connected, simply connected Lie group whose Lie algebra is g �

R3`R3 with the Lie bracket defined by rpu1, u2q, pv1, v2qs � p0, u1�v1q, where � denotes the cross

product on R3. We claim that G is quadrable but not reductive.

Let us first prove that G is not reductive. We will actually prove something stronger, namely

that the center of g (defined as the kernel of the adjoint representation of g in Section 1.1) is

zpgq � rg, gs. This will of course imply that g is not reductive. To see that zpgq � rg, gs, first

observe that for u, v, w P g, we have

ru, rv, wss � ru, p0, v1 � w1qs � p0, u1 � 0q � p0, 0q.

9



Conversely, if ξ P g is such that ru, ξs � p0, u1 � ξ1q � p0, 0q for every u P g, then it must have

ξ1 � 0 showing that ξ P rg, gs.

In order to see that g is quadrable, consider the bilinear form

B : g� gÑ R

pu, vq ÞÑ xu1, v2y � xu2, v1y,

where x�,�y denotes the standard scalar product on R3. Clearly, B is symmetric and non-

degenerate. We prove that B is Ad-invariant in two steps. First, we prove that it is ad-invariant

which means that for every u, v, w P g, it holds that

Bpru, vs, wq �Bpv, ru,wsq � 0.

This can be seen by the following computation:

Bpv, ru,wsq � xv1, u1 � w1y � xw1, v1 � u1y � Bpw, rv, usq � �Bpru, vs, wq.

Now, we explain how Ad-invariance follows from ad-invariance. Since the Lie exponential exp: gÑ

G is a local diffeomorphism at 0 P g and G (assumed to be connected here) is generated by a

neighbourhood of the identity element, it’s enough to check that B is Ad-invariant on exppgq.

Given ξ, u, v P g, define

fptq :� B
�
Adpexpptξqqu,Adpexpptξqqv

�
.

Then fp0q � Bpu, vq and

f 1p0q � Bprξ, us, vq �Bprξ, vs, usq � 0

by ad-invariance. Using that expppt� sqξq � exppsξq expptξq, we can easily that f 1ptq � 0 for every

t. This implies that f is constant. The relation fp1q � fp0q exactly shows that B is Ad-invariant

on exppgq.

This example of a quadrable, but not reductive, Lie algebra can be generalized as follows.

From a quadrable Lie algebra g with pairing B, construct the Lie algebra g � g with Lie bracket

rpξ1, ξ2q, pζ1, ζ2qsg�g :� p0, rξ1, ζ1sgq. Similar arguments as above show that g� g is not reductive.

To prove that however g� g is quadrable, consider the symmetric and non-degenerate pairing

B ppξ1, ξ2q, pζ1, ζ2qq :� Bpξ1, ζ2q �Bpξ2, ζ1q.

Again, we can see that B is Ad-invariant by the reasoning as above.
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1.2 Algebraic groups

Definition 1.2.1. A group G is called an algebraic group if it is an algebraic variety5 and if the

operations are regular maps.

The Zariski closure of any subgroup of G is an algebraic subgroup [Mil17, Lem. 1.40] and any

algebraic subgroup of G is Zariski closed [Mil17, Prop. 1.41]. For instance, the centralizer ZpSq

of a subset S � G is Zariski closed, hence an algebraic subgroup. All algebraic groups over the

fields of real or complex numbers, respectively called real or complex algebraic groups, are also Lie

groups, see [Mil13, III, §2] and references therein.

Example 1.2.2 (Linear algebraic groups). Let K denote either R or C. The group GLpn,Kq,
and all its Zariski closed subgroups, such as SLpn,Kq, Spp2n,Kq or SOpn,Kq, are algebraic groups.

They are called linear algebraic groups. Algebraic groups, however, are not necessarily linear (for

instance, elliptic curves are non-linear algebraic groups). The group SUpp, qq is a real algebraic

group, but is not a complex algebraic variety, see e.g. [SKKT00, Exercise 1.1.2].

Other examples of real algebraic groups include PGLpn,Rq for every n ¥ 1 as it can be seen as

the group of automorphisms of the n�n real matrices, which is an algebraic subgroup of GLpn2,Rq.
For the same reason, PGLpn,Cq � PSLpn,Cq is a complex algebraic group for every n ¥ 1. When

n is odd, then PSLpn,Rq � PGLpn,Rq and so PSLpn,Rq is also algebraic. However, when n is

even, then PSLpn,Rq � PGLpn,Rq0 is only a semi-algebraic group.6

1.2.1 Reductive algebraic groups

Definition 1.2.3. Any algebraic group contains a unique maximal normal connected solvable

subgroup called the radical, see [Mil17, Chap. 6, §h]. A reductive algebraic group is a connected

algebraic group whose radical over C is an algebraic torus, i.e. isomorphic to pC�qn for some n ¥ 0.

A reductive algebraic group over the fields of real or complex numbers is in particular a reductive

Lie group in the sense of Section 1.1.2, hence quadrable [Mil13, II, §4].

Example 1.2.4. Connected linear algebraic groups G � GLpn,Cq are reductive if and only if the

trace form g � g Ñ C, pξ1, ξ2q ÞÑ Trpξ1ξ2q is non-degenerate. In particular, SLpn,Cq for n ¥ 2,

Spp2n,Cq and SOpn,Cq for n ¥ 3 are reductive algebraic groups.

1.2.2 The groups SLp2,Cq and SLp2,Rq

The group SLp2,Cq is the group of complex 2 � 2 matrices with determinant 1. It is a reductive

complex algebraic group of complex dimension 3. It is also a non-compact and simple complex

Lie group. The group SLp2,Cq is irreducible in the sense that it does preserve an proper subspace

when it acts linearly on C2. Its center is ZpSLp2,Cqq � t�Iu, where I denotes the 2 � 2 identity

5In the context of this work, an algebraic variety is understood to be the zero locus of a set of polynomial equations
over R or C (in other words, algebraic varieties are always affine). We make no assumption about irreducibility and, in
particular, we don’t distinguish algebraic varieties and algebraic sets. Morphisms of algebraic varieties are restrictions
of polynomial maps and are called regular maps.

6Polynomials equalities are not enough to write PSLpn,Rq when n is even; we have to use polynomials inequalities
too. When this is the case, we say that the group is semi-algebraic.
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matrix. The case of SLp2,Cq is interesting because we have a complete understanding of its algebraic

subgroups from Sit’s classification.

Theorem 1.2.5 ([Sit75]). If G is an infinite algebraic subgroup of SLp2,Cq, then one the following

holds:

1. dimC G � 3 and G � SLp2,Cq.

2. dimC G � 2 and G is conjugate to the parabolic subgroup of upper triangular matrices.

3. dimC G � 1 and there are three possibilities:

(a) G is conjugate to #�
a b

0 a�1

�
: an � 1, a, b P C

+
,

and G has n connected components.

(b) G is conjugate to SOp2,Cq, and G is connected and abelian.

(c) G is conjugate to SOp2,CqYi SOp2,Cq, and G is abelian with two connected components.

Moreover, G is irreducible if and only if G � SLp2,Cq or if G is conjugate to SOp2,CqY i SOp2,Cq.

Recall that an algebraic subgroup of SLp2,Cq of complex dimension 0 is necessarily finite (be-

cause algebraic varieties have finitely many connected components in the usual topology, as pointed

out earlier). These groups are well-understood too, see e.g. [Sit75, Prop. 1.2]. Finite subgroups of

SLp2,Cq are irreducible if they are non-abelian.

The real points of SLp2,Cq give the real algebraic group SLp2,Rq, which is a simple and con-

nected Lie group. The group SLp2,Rq is irreducible in the sense that it does not preserve any proper

subspace of R2. From the list of Theorem 1.2.5, we can obtain the list of algebraic subgroups of

SLp2,Rq.

Theorem 1.2.6. If G is an infinite algebraic subgroup of SLp2,Rq, then one the following holds:

1. dimR G � 3 and G � SLp2,Rq.

2. dimR G � 2 and G is conjugate to the parabolic subgroup of upper triangular matrices.

3. dimR G � 1 and there are three possibilities:

(a) G is conjugate to #�
1 b

0 1

�
: b P R

+
,

and G is connected and abelian.

(b) G is conjugate to #�
1 b

0 1

�
: b P R

+
Y

#�
�1 b

0 �1

�
: b P R

+
,

and G is has two connected components.
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(c) G is conjugate to SOp2q, and G is connected and abelian.

(d) G is conjugate to SOp1, 1q, and G has two connected components.

(e) G is conjugate to

SOp1, 1q Y

�
0 1

�1 0

�
SOp1, 1q,

and G has four connected components.

Moreover, G is irreducible if and only if G � SLp2,Rq or if G is conjugate to either SOp2q or to

SOp1, 1q Y

�
0 1

�1 0

�
SOp1, 1q.

1.3 Group (co)homology

This section is a short introduction to group (co)homology and relative group (co)homology. These

notions are important because group cohomology is the natural language to describe the Zariski

tangent spaces to character varieties as we will see in Section 2.3 below. This note is a short

summary of classical literature such as [Nos17, §7], [Löh10] and [BE78].

1.3.1 Definiton

We begin by recalling the definitions of group (co)homology. Group (co)homology is a functor from

the category of discrete groups Γ with a left Γ-module M to the category of graded abelian groups:

H�, H� :

�
pairs of a discrete group

and a left module

�
ÝÑ

�
graded abelian

groups

�
.

By requiring Γ to be discrete, we obtain a topological interpretation of group (co)homology.

Recall that the natural topology on the fundamental group of a space that admits a universal cover

is the discrete topology, because it is the coarser topology that makes the universal cover a principal

bundle for the deck transformation action. Discrete groups have the following property.

Theorem 1.3.1 (Classifying Space Theorem). If Γ is a discrete group, then there is a unique

connected space BΓ, up to canonical homotopy, called the classifying space7 of G, such that

π1pBΓq � Γ, πipBΓq � 0, @i ¥ 2.

A possible definition of the (co)homology of the pair pΓ,Mq, where Γ is a discrete group and

M is a left Γ-module, would be to say that it is the singular (co)homology of BΓ with coefficients

in M . We favour however a more intrinsic approach.

Let ZrΓs be the integral group ring of Γ, i.e. the free Z-module generated by the elements of

Γ. Note that a Γ-module structure is by definition the same as a ZrΓs-module structure. Let

ε : ZrΓs Ñ Z be the augmentation map defined by g ÞÑ 1, g P Γ, and extended Z–linearly to ZrΓs.
We denote by ∆ the kernel of the augmentation map.

7The names Eilenberg-MacLane space or KpΓ, 1q space are also common.
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Definition 1.3.2 (Group (co)homology). The group (co)homology of the discrete group Γ with

coefficients in the left Γ-module M is

H�pΓ,Mq :� Tor
ZrΓs
� pZ,Mq, HkpΓ,Mq :� Ext�ZrΓspZ,Mq.

Definition 1.3.2 uses the derived functors Tor and Ext. What this really means is that group

(co)homology can be computed with projective resolutions of ZrΓs-modules. Recall that a module

P is projective if it satisfies the following lifting property

A

P B,

@
D

@

by which we mean that every morphism P Ñ B factors through every surjective morphism AÑ B.

Equivalently, P is projective if every short exact sequence of modules

0 ÝÑ A1 ÝÑ B1 f
ÝÑ P ÝÑ 0

splits, i.e. there exists a morphism of modules h : P Ñ B1, called section map, such that f � h is

the identity on P , see [Bou89, Chap. 2, §2, Prop. 4]. A projective resolution P of a module C (not

necessarily projective) is an exact sequence of projective modules ending in C Ñ 0:

. . .
B3ÝÑ P2

B2ÝÑ P1
B1ÝÑ C ÝÑ 0 (exact).

A projective resolution is denoted P ↠ C. The fundamental property of projective resolutions is

Lemma 1.3.3. Any two projective resolutions of the same module are chain homotopic.

The derived functors in Definition 1.3.2 mean that if P ↠ ∆ � Kerpεq is the projective

resolution of ZrΓs-modules

. . .
B3ÝÑ P2

B2ÝÑ P1
B1ÝÑ ZrΓs ε

ÝÑ Z ÝÑ 0,

then

H�pΓ,Mq � H�pP bΓ Mq, H�pΓ,Mq � H�
�
HomΓpP;Mq

�
.

In particular, H0pΓ,Mq � ∆bΓM and the negative-degree cohomology modules vanish. Similarly,

H0pΓ,Mq � HomΓp∆,Mq. Since any two projective resolutions of ∆ are chain homotopic, group

(co)homology is independent of the choice of the projective resolution P ↠ ∆.

Example 1.3.4. We compute the homology of free groups with coefficients in a trivial module M .

Let Fn � xγ1, . . . , γny be the free group on n elements. We claim that ∆ is the free ZrFns–module

given by ∆ � xγ1 � 1, . . . , γn � 1yZrFns. The show the inclusion ∆ � xγ1 � 1, . . . , γn � 1yZrFns,

argument as follows. If x P ∆, then x �
°

nihi where hi P Fn and the ni are integers whose sum

is zero. An induction on the length of hi shows that phi � 1q P xγ1 � 1, . . . , γn � 1yZrFns. Now,

since x �
°

nihi �
°

niphi � 1q, we conclude that x P xγ1 � 1, . . . , γn � 1yZrFns. Since ∆ is a free

ZrFns–module, then

0 ÝÑ ∆ ÝÑ ZrFns
ε
ÝÑ Z ÝÑ 0
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is a free, hence projective, resolution of ∆. In particular

HkpFn,Mq �

$'&'%
M, k � 0

Mn, k � 1

0, k ¥ 2

.

Note that this corresponds to the homology of a sphere with n� 1 punctures, which is coherent by

Theorem 1.3.1 since the fundamental group of a sphere with n � 1 punctures is a free group on n

generators (see also Definition 1.4.1).

1.3.2 The bar resolution

Our favourite choice of projective resolution of ∆ is the so-called bar resolution. It is defined by

Pk :� ZrΓk�1s for k ¥ 1. Using the canonical isomorphism M bΓZrΓk�1s �M bZZrΓks, we obtain

that the group homology of Γ with coefficients in M can be computed as the homology of the chain

complex

CkpΓ,Mq :�M bZ ZrΓks, k ¥ 0.

It is called the bar chain complex of Γ and M . The differential Bk : CkpΓ,Mq Ñ Ck�1pΓ,Mq is

defined by

Bkpab pg1, . . . , gkqq :�g1 � ab pg2, . . . , gkq

�
k�1̧

i�1

p�1qiab pg1, . . . , gi�1, gigi�1, gi�2, . . . , gkq

� p�1qkab pg1, . . . , gk�1q, (1.3.1)

where a PM and pg1, . . . , gkq P Γk. The bar cochain complex is given by

CkpΓ,Mq :� MappΓk,Mq, k ¥ 0,

where MappΓk,Mq is the Γ-module of set-theoretic functions from Γk to M . The differential

Bk : Ck�1pΓ,Mq Ñ CkpΓ,Mq is defined by

pBkuqpg1, . . . , gkq :�g1 � upg2, . . . , gkq

�
k�1̧

i�1

p�1qiupg1, . . . , gi�1, gigi�1, gi�2, . . . , gkq

� p�1qkupg1, . . . , gk�1q, (1.3.2)

where u P MappΓk�1,Mq and pg1, . . . , gkq P Γk. One can easily check that the squares of the

differentials Bk and Bk vanish. The sets of k-cocycles and k-coboundaries of the bar complex are

denoted by ZkpΓ,Mq and BkpΓ,Mq, respectively. For example, the 1-cocycles are

Z1pΓ,Mq :� tu : ΓÑM : upg1g2q � upg1q � g1 � upg2q, @g1, g2 P Γu
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and the 1-coboundaries are

B1pΓ,Mq :� tu : ΓÑM : Da PM, upgq � g � a� a, @g P Γu.

There is an obvious relation between the differentials (1.3.1) and (1.3.2) given by

pBkuqpg1, . . . , gkq � ũ
�
Bkp1b pg1, . . . , gkqq

�
, (1.3.3)

where ũ : MbZZrΓk�1s ÑM is the unique lift of the Z-linear mapM�ZrΓk�1s ÑM , pa, pg1, . . . , gkqq ÞÑ

a � upg1, . . . , gkq.

1.3.3 Relative group (co)homology

Let Λ � tΛi : i P Iu be a family of subgroups of Γ stable under conjugation. We define the group

(co)homology of Γ relative to Λ with coefficients in M . Let ZrΓ{Λs :�
À

iPI ZrΓ{Λis be the direct

sum of the free groups generated by the left cosets of Λi in Γ. We denote by ∆ the kernel of the

augmentation map ε : ZrΓ{Λs Ñ Z.

Definition 1.3.5 (Relative group (co)homology). The relative (co)homology groups of Γ relative

to K with coefficients in the Γ-module M are defined by

H�pΓ,Λ,Mq :� Tor
ZrΓs
��1pZ,∆bΓ Mq,

H�pΓ,Λ,Mq :� Ext��1
ZrΓspZ,HomΓp∆,Mqq.

Observe that

H�pΓ,Λ,Mq � H��1pΓ,∆bΓ Mq, (1.3.4)

H�pΓ,Λ,Mq � H��1pG,HomΓp∆,Mqq. (1.3.5)

In particular, H0pΓ,Λ,Mq � H0pΓ,Λ,Mq � 0, H1pΓ,Λ,Mq � ∆ bΓ M and H1pΓ,Λ,Mq �

HomΓp∆,Mq.

Remark 1.3.6. Definition 1.3.5 makes perfect sense even if Λ is not assumed to be closed under con-

jugation. This gives a notion of group (co)homology relative to any family of subgroups. However,

this notion is equivalent to the former in the following sense. If Λ denote the conjugation closure

of Λ:

Λ :� tgΛig
�1 : g P Γ,Λi P Λu,

then there are canonical isomorphisms

H�pΓ,Λ,Mq � H�pΓ,Λ,Mq, H�pΓ,Λ,Mq � H�pΓ,Λ,Mq. (1.3.6)

Indeed, choose a set of coset representatives X for Γ{Λ. This gives an identification ZrΓ{Λs �
ZrΓ{Λs which induces the desired isomorphisms. The resulting isomorphisms (1.3.6) are indepen-

dent of the choice of X , see [BE78, Proposition 7.5].
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1.3.4 Bar resolution for relative (co)homology

The bar resolution for relative group (co)homology is obtained from the bar resolution for group

(co)homology using the cone construction. Recall that if A and B are chain complexes and f : B Ñ

A is a morphism of chain complexes, then the cone of f is the chain complex Cpfq with differential

d given by

Cpfqk :� Ak `Bk�1, dpα, βq :� p�dα� fpβq, dβq.

This construction produces an exact triangle of complexes B Ñ AÑ Cpfq Ñ Br�1s where Br�1s

is the shifted complex obtained from B, also called the suspension of B. The exact triangle induces

a long exact sequence in (co)homology. We adopt the shorthand notation

CkpΛ,Mq :�
à
iPI

CkpΛi,Mq, CkpΛ,Mq :�
¹
iPI

CkpΛi,Mq.

The relative bar chain complex is given by the cone of the inclusion Ki � Γ, i.e.

CkpΓ,Λ,Mq : � CkpΓ,Mq ` Ck�1pΛ,Mq,

�M bΓ

�
ZrΓks ` ZrΛk�1s

�
.

with differential Bk : CkpΓ,Λ,Mq Ñ Ck�1pΓ,Λ,Mq defined by

Bkpg, hq :�
�
� Bkg �

¸
iPI

ıihi, Bk�1h
�
, (1.3.7)

where g P CkpΓ,Mq and h � phiqiPI P Ck�1pΛ,Mq. Recall that at most finitely many hi are

nonzero so that the sum in (1.3.7) makes sense. The relative bar cochain complex is defined by

CkpΓ,Λ,Mq : � CkpΓ,Mq ` Ck�1pΛ,Mq,

� MappΓk,M
�
`
¹
iPI

MappΛk�1
i ,M

�
.

The differential Bk : CkpΓ,Λ,Mq Ñ Ck�1pΓ,Λ,Mq is given by

Bkpu, fq : �
�
Bku, u ıi � B

k�1fiq

�
�
u Bk�1, u ıi � fiBk

�
, (1.3.8)

where u P CkpΓ,Mq and f � pfiqiPI P Ck�1pΛ,Mq. The second equality in (1.3.8) follows from the

relation (1.3.3) which implies uBk�1 � Bku and fBk � Bk�1f .

1.3.5 Long exact sequences

There are long exact sequences in group homology and cohomology that read

. . . ÝÑ HkpΛ,Mq
`pıiq�
ÝÑ HkpΓ,Mq

j
ÝÑ HkpΓ,Λ,Mq

r
ÝÑ Hk�1pΛ,Mq ÝÑ . . . (1.3.9)

. . . ÝÑ Hk�1pΛ,Mq
r
ÝÑ HkpΓ,Λ,Mq

j
ÝÑ HkpΓ,Mq

�pıiq
�

ÝÑ HkpΛ,Mq ÝÑ . . . (1.3.10)
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We used the shorthand notations HkpΛ,Mq :�
À

iPI HkpΛi,Mq and HkpΛ,Mq :�
±

iPI H
kpΛi,Mq.

The morphisms j and r are induced from the inclusion and restriction on the (co)chain complex

level. The long exact sequences are obtained by applying the derived functors Ext�ZrΓsp�,Mq and

Tor
ZrΓs
� p�,Mq to the short exact sequence

0 ÝÑ ∆ ÝÑ ZrΓ{Λs ÝÑ Z ÝÑ 0.

1.3.6 Relation to singular (co)homology

The purpose of this section is to explain how the singular (co)homology of a space relates to the

group (co)homology of its fundamental group.

Definition 1.3.7 (Eilenberg-MacLane pair). A pair of topological spaces pX,Y q with Y � X is

called an Eilenberg-MacLane pair of type KpΓ,Λ, 1q, if X is a KpΓ, 1q CW-complex and if Y � \Yi

where each Yi is a KpΛi, 1q subcomplex of X.

Equivalently, pX,Y q is an Eilenberg-MacLane pair if each inclusion Yi ãÑ X induces an injective

homomorphism π1pYi, yiq ãÑ π1pX, yiq and if there exists an isomorphism φ : π1pX, yiq Ñ Γ induced

by a suitable choice of path connecting base points such that φpπ1pYi, yiqq � Λi

π1pYi, yiq π1pX, yiq

Λi Γ.

φ φ

ıi

The standard examples of Eilenberg-MacLane pairs are pairs pX,Y q where X is a KpΓ, 1q-space

and Y is the boundary of X.

Theorem 1.3.8 ([BE78]). Let pX,Y q be an Eilenberg-MacLane pair of type KpΓ,Λ, 1q. Then there

exist isomorphisms in (co)homology in every degree that relates the long exact sequences of the pairs

pX,Y q and pΓ,Λq such that the following diagram commutes (up to a minus sign for the middle

square)

Hk�1pΛ,Mq HkpΓ,Λ,Mq HkpΓ,Mq HkpΛ,Mq

Hk�1pY,Mq HkpX,Y,Mq HkpX,Mq HkpY,Mq.

� � � �

Remark 1.3.9. Observe that if pX,Y q is an Eilenberg-MacLane pair of type KpΓ,Λ, 1q, then it is

also an Eilenberg-MacLane pair of type KpΓ,Λ1, 1q where Λ1 is obtained from Λ by individually

conjugating its elements. So, as a byproduct of Theorem 1.3.8, we get a natural isomorphism

between the (co)homology of the pairs pΓ,Λq and pΓ,Λ1q. This isomorphism corresponds to the one

induced by (1.3.6). In addition there are natural isomorphisms

H�pX,Y,Mq � H�pΓ,Λ,Mq, H�pX,Y,Mq � H�pΓ,Λ,Mq,

where Λ denotes the conjugation closure of Λ introduced in Remark 1.3.6.

We refer the reader to [BE78, Thm. 1.3] for a proof of Theorem 1.3.8.
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1.3.7 Cup product

We introduce the cup product in group cohomology using the bar cochain complex as in [Nos17,

§7]. Let Γ be a discrete group and M,M 1 be two Γ-modules.

Definition 1.3.10 (Cup product). The cup product of u P CkpΓ,Mq and v P ClpΓ,M 1q is defined

as the cochain u! v P Ck�lpΓ,M bΓ M 1q defined by

u! vpg1, . . . , gk�lq :� upg1, . . . , gkq b g1 � � � gk � vpgk�1, . . . , glq. (1.3.11)

There is also a relative version of the cup product defined as follows. For u P CkpΓ,Mq and

f P Ck�1pΛ,Mq, and v P ClpΓ,M 1q, the cup product of pu, fq with v to be the cochain

pu! v, f ! vq P Ck�lpΓ,Λ,M bΓ M 1q.

Lemma 1.3.11. The cup product satisfies the Leibniz rule. For every u P CkpΓ,Mq and v P

ClpΓ,M 1q, it holds

Bk�l�1pu! vq � Bk�1u! v � p�1qku! Bl�1v.

The Leibniz rule implies that the cup product descends to a well-defined G-invariant product

on cohomology:

! : HkpΓ,Mq bG H lpΓ,M 1q Ñ Hk�lpΓ,M bΓ M 1q.

And similarly in relative cohomology

! : HkpΓ,Λ,Mq bΓ H lpΓ,M 1q Ñ Hk�lpΓ,Λ,M bΓ M 1q. (1.3.12)

Without further assumptions, the cup product in cohomology may be a degenerate pairing. We

will see an example where it is non-degenerate in Section 1.3.8. Depending on the degree, the cup

product may be symmetric or anti-symmetric. This is shown by the next lemma.

Lemma 1.3.12. Up to the natural identification M bΓ M 1 �M 1 bΓ M , it holds that

ru! vs � p�1qklrv ! us, @u P ZkpΓ,Mq, @v P ZlpΓ,M 1q.

Proof. We treat the case k � l � 1. The other cases are similar. We start by computing the

differential of ub v using (1.3.2)

�B2pub vqpx, yq � �upxq b vpxq � upxyq b vpxyq � x � pupyq b vpyqq

� upxq b x � upyq � x � upyq b vpxq

� u! vpx, yq � v ! upx, yq,

where in the second equality we used the cocycle property upxyq � upxq�x �upyq. This shows that

u! v � v ! u is a coboundary.

19



1.3.8 Cap product and Poincaré duality

The purpose of [BE78] was to describe a notion of Poincaré duality for group pairs. This can be

done as follows. Let P ↠ Z be a projective resolution of Γ-modules. Then P bΓ P is a projective

resolution of Z for the diagonal Γ-action on P bΓ P.

Definition 1.3.13 (Cap product). Let g � p b q b a P pP bG Pq bG M and u P HomGpP,M 1q.

The cap product of g and u is defined to be

g " u :� q b pab uppqq P P bΓ pM bΓ M 1q.

Lemma 1.3.14. The cap product is a well-defined operation on complexes and satisfies the Leibniz

rule

Bkpg " uq � p�1qlBk�l g " u� g " Blu.

The induced cap product on (co)homology is

" : Hk�lpΓ,Mq bΓ HkpG,M 1q Ñ HlpΓ,M bΓ M 1q

The definition of the cap product in relative (co)homology uses the pairing

B : p∆bΓ Mq bΓ HomGp∆,M 1q ÑM bΓ M 1

pg b aq b u ÞÑ ab upgq. (1.3.13)

Definition 1.3.15 (Cap product–relative). The cap product on relative group (co)homology is the

dashed arrow that makes the following diagram commute.

Hk�lpΓ,Λ,Mq bΓ H lpΓ,Λ,M 1q HlpΓ,M bΓ M 1q

Hk�l�1pΓ,∆bΓ Mq bΓ Hk�1pΓ,HomΓp∆,M 1qq

"

B�"

The equality in the first column is an application of (1.3.4) and (1.3.5). Using a modified version

of the pairing (1.3.13), one can define a second variant of the cap product

" : Hk�lpΓ,Λ,Mq bΓ HkpΓ,M 1q Ñ HlpΓ,Λ,M bΓ M 1q.

The two versions of the cup product are natural operations in group (co)homology as described

and proved in [BE78]. The cap product maps the long exact sequence in cohomology for the

pair pΓ,Λq to its long exact sequence in homology. This commutes with the corresponding map in

singular homology under the isomorphism of Theorem 1.3.8. Indeed, let pX,Y q denote an Eilenberg-

MacLane pair of type KpΓ,Λ, 1q. For any e P HnpΓ,Λ,Mq, let e P HnpX,Y,Mq be the image of

e under the isomorphism of Theorem 1.3.8. The following diagram commutes for k � 0, . . . , n (up

to some minus signs depending on the degree of the two lower squares, see [BE78] for complete

details).
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Hn�kpΓ,Λ,M bΓ M 1q Hn�k�1pΛ,M bΓ M 1q Hn�k�1pΓ,M bΓ M 1q

HkpΓ,M 1q HkpΛ,M 1q Hk�1pΓ,Λ,M 1q

HkpX,M 1q HkpY,M 1q Hk�1pX,Y,M 1q

Hn�kpX,Y,M bΓ M 1q Hn�k�1pY,M bΓ M 1q Hn�k�1pX,M bΓ M 1q

�

e" rpeq"

� �

e"

e" rpeq" e"

In the above diagram, r denotes the connecting morphism of the long exact sequence (1.3.9). In

particular, the following square commutes.

HkpX,Y,M 1q HkpΓ,Λ,M 1q

Hn�kpX,M bΓ M 1q Hn�kpΓ,M bΓ M 1q

e"

�

e"

�

Poincaré duality for de Rham cohomology says that if X is a smooth, compact, connected

manifold of dimension n, and rXs is a generator of HnpX,Zq � Z, then the cap product with rXs

is an isomorphism

rXs" : Hk
dRpX,Rq �

ÝÑ Hn�kpX,Rq, k � 0, . . . , n.

In the context of group (co)homology, one introduces the notion of Poincaré duality pairs.

Definition 1.3.16 (Duality pairs). The pair pΓ,Λq is called a duality pair of dimension n, in short

a Dn-pair, if there exists a G–module N and an element e P HnpΓ,Λ, Nq such that both

� e" : HkpΓ,Mq Ñ Hn�kpΓ,Λ, N bΓ Mq

� e" : HkpΓ,Λ,Mq Ñ Hn�kpΓ, N bΓ Mq

are isomorphisms for every k � 0, . . . , n and for every Γ-module M . Moreover, if N can be chosen

to be isomorphic to Z as a group, then pΓ,Λq is called a Poincaré duality pair of dimension n, in

short a PDn-pair.

If pΓ,Λq is a Dn-pair, then by letting M � ZrΓs and k � n, we obtain HnpΓ,Λ,ZrΓsq �
H0pΓ, N bΓ ZrΓsq � N . Therefore, a duality pair determines a unique dualizing module N up to

isomorphism.

Definition 1.3.17 (Fundamental class). For a PDn-pair we call each of the two generators of

HnpΓ,Λ, Nq � Z a fundamental class of pΓ,Λq.

Example 1.3.18. Let X be a smooth, compact, connected, manifold of dimension n with non-

empty boundary BX. Let rX, BXs P HnpX, BX,Zq be a fundamental class. Assume that pX, BXq

an Eilenberg-MacLane pair of type KpΓ,Λ, 1q. Then pΓ,Λq is a PDn-pair with fundamental class

rΓ,Λs given by the image of rX, BXs under the isomorphism of Theorem 1.3.8. In particular, the

following diagram commutes.
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Hn
dRpX, BX,Rq H0pX,Rq

HnpΓ,Λ,Rq H0pΓ,Rq

rX,BXs"

�

rΓ,Λs"

�

Here, R is the trivial Γ-module.

Observe that if pΓ,Λq is a Dn-pair, then there exists an induced isomorphism

rpeq" :
¹
iPI

HkpΛi,M
1q Ñ

à
iPI

Hn�k�1pΛi,M bΓ M 1q

in every degree k and for every Γ-modules M , M 1. Therefore, Λ must be a finite collection of

subgroups.

Lemma 1.3.19. Let pΓ,Λq be a PDn-pair and R be the trivial Γ-module. The cap product in degree

n for the bar resolution is

" : HnpΓ,Λ,Rq bΓ HnpΓ,Λ,Rq Ñ R

rpg, h1, . . . , hmqs b rpu, f1, . . . , fmqs ÞÑ upgq �
m̧

i�1

fiphiq, (1.3.14)

where u : Γn Ñ R and fi : Λ
n�1
i Ñ R have been extended Z-linearly to ZrΓns, respectively ZrΛn�1

i s.

Proof. We only check that (1.3.14) vanishes if pg, h1, . . . , hmq is exact. A complete proof is given

in [KM96, Proposition 5.8].

The condition Bnpu, f1, . . . , fmq � 0 as defined in (1.3.8) means that Bnu � 0 and uæΛi
�Bn�1fi �

0 for all i. Since pg, h1, . . . , hmq is assumed to be exact, there exist pg1, h11, . . . , h
1
mq P Cn�1pΓ,Λ,Rq

such that

pg, h1, . . . , hmq � Bn�1pg
1, h11, . . . , h

1
mq

�

�
m̧

i�1

h1i � Bn�1g
1, Bnh

1
1, . . . , Bnh

1
m

�
.

We compute

upgq �
m̧

i�1

fiphiq �
m̧

i�1

uæKi
ph1iq � upBn�1g

1q �
m̧

i�1

fipBnh
1
iq

�
m̧

i�1

uæKi
ph1iq � B

nupg1q �
m̧

i�1

Bn�1fiph
1
iq,

where in the second equality we applied the relation (1.3.3). The last expression vanishes because

pu, f1, . . . , fmq is closed.
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1.3.9 Parabolic group cohomology

Parabolic group cohomology was introduced in the sixties by André Weil. We give a succinct

introduction inspired from [GHJW97] and [Law09]. Let Γ be a discrete group and Λ � tΛi : i P Iu

be a family of subgroups of Γ. Let M be a Γ-module and k ¥ 0 an integer.

Definition 1.3.20 (Parabolic cocycles). Define the set of parabolic cocycles in the bar complex

to be the set k-cocycle f : Γk Ñ M such that all the restrictions fæΛi
are exact, i.e. belong to

BkpΛi,Mq. The set of parabolic cocycles in degree k is denoted

Zk
parpΓ,Mq � ZkpΓ,Mq.

Parabolic cocycles are thus cocycles that are exact on the boundary.

Definition 1.3.21 (Parabolic group cohomology). The parabolic group cohomology of Γ with co-

efficients in the Γ-module M is defined to be

H�
parpΓ,Mq :� Z�

parpΓ,Mq{B�pΓ,Mq � H�pΓ,Mq.

It follows from Definition 1.3.21 that parabolic group cohomology is related to relative group

cohomology as follows.

Lemma 1.3.22. Let j : HkpΓ,Λ,Mq Ñ HkpΓ,Mq be the morphism of the long exact sequence (1.3.10)

for the pair pΓ,Λq. Then,

Hk
parpΓ,Mq � j

�
HkpΓ,Λ,Mq

�
� HkpΓ,Λ,Mq{Kerpjq.

It is not hard to see that the orthogonal of H l
parpΓ,M

1q � H lpΓ,M 1q for the cup product defined

in (1.3.12) is the kernel of j inside HkpΓ,Λ,Mq. This is a consequence of the Leibniz rule from

Lemma 1.3.11. In particular, the cup product induces a pairing

! : Hk
parpΓ,Mq bΓ H l

parpΓ,M
1q Ñ Hk�lpΓ,Λ,M bΓ M 1q. (1.3.15)

If pΓ,Λq is a PDn-pair with n � k � l, then the pairing (1.3.15) is non-degenerate. Actually, the

cup product (1.3.12), before restriction to H l
parpΓ,M

1q, is also non-degenerate. This can be seen

by turning (1.3.12) using integration against a fundamental class into the non-degenerate pairing

HlpΓ,Mq bΓ H lpΓ,M 1q Ñ H0pΓ,Λ,M bΓ M 1q.

1.4 Finitely generated groups

We explained that the first ingredient to define a character variety is a target Lie group. Now, it

is time to talk about the second ingredient: a finitely generated group Γ. In most examples and

applications, Γ will even be finitely presented. Finitely generated groups are always equipped with

the discrete topology. In practice, it is often desirable to restrict to a particular class of finitely

generated groups in order to obtain more precise statements. Typically, our favourite example of
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finitely presented groups are fundamental groups of oriented surfaces. These are traditionally called

surface groups.

1.4.1 Surface groups

Definition 1.4.1 (Surface groups). Let g ¥ 0 and n ¥ 0 be two integers. A group is called a

surface group if it is abstractly isomorphic to

πg,n :�

C
a1, b1, . . . , ag, bg, c1, . . . , cn :

g¹
i�1

rai, bis �
n¹

j�1

cj

G
, (1.4.1)

where rai, bis � aibia
�1
i b�1

i denotes the commutator of ai and bi. If n � 0, then it is called a closed

surface group.

In particular, all free groups are surface groups since πg,n is isomorphic to the free group on

2g�n� 1 generators whenever n ¥ 1. Surface groups are almost never abelian as for instance πg,0

is non-abelian for g ¥ 2. The generators ci in (1.4.1) will play a central role later in Section 5.3

in the context of relative representation varieties. The name “surface group” is explained by the

following lemma.

Lemma 1.4.2. Let Σg,n denote a connected orientable topological surface of genus g ¥ 0, with

n ¥ 0 punctures. The fundamental group of Σg,n is isomorphic to πg,n.

Proof. The proof for the case n � 0 is explained in [Lab13, Thm. 2.3.15]. Its generalization to

punctured surfaces can be understood in two steps. First, observe that a sphere with n ¥ 1

punctures is homotopy equivalent to the wedge of n � 1 circles. Hence, its fundamental group is

the free group on n� 1 generators. Similarly, a surface of genus g with one puncture is homotopy

equivalent to the wedge of 2g circles. Thus, its fundamental group is the free group on 2g generators.

Now, note that Σg,n is the union of two sub-surfaces Σg,1 and Σ0,n�1. The conclusion now follows

from Van Kampen’s Theorem.

We denote by pΣg,n the surface with boundary obtained from Σg,n by replacing each puncture

by a boundary component. We also write Bπg,n to denote the collection of 1-parameter subgroups

of πg,n generated by c1, . . . , cn. With this notation in mind, we deduce from Lemma 1.4.2 that

ppΣg,n, BpΣg,nq is an Eilenberg-MacLane pair of type Kpπg,n, Bπg,n, 1q in the sense of Definition 1.3.7.

We can thus compute the group (co)homology of πg,n relative to Bπg,n from the (co)homology of

the pair ppΣg,n, BpΣg,nq using Theorem 1.3.8. This shows for instance that the closed surface groups

πg,0 are pairwise non-isomorphic because their cohomology with real coefficients differs in degree

1. It also shows that πg,0 is non-free for g ¥ 1 since its homology differs from the homology of free

groups computed in Example 1.3.4.

1.4.2 Fundamental class

It will be useful later to have an explicit fundamental class, in the sense of Definition 1.3.17, for

the pair pπg,n, Bπg,nq expressed in the relative bar complex. Recall from Example 1.3.18 that a
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a1

a2
. . .

b1

b2

. . .

c1

c2. . .

Figure 1.1: Illustration of a collection of generators of the fundamental group of a punctured surface:
Two generators for each genus and one for each puncture. These are related by a single relation,
namely that of (1.4.1).

fundamental class for the pair pπg,n, Bπg,nq is a generator of H2pπg,n, Bπg,n,Zq � Z, where Z is the

trivial πg,n-module. For every i � 1, . . . , g, we consider the following 2-chains inside C2pπg,n,Zq �
Zrπg,n � πg,ns:

xi �

�¹
j i

raj , bjs, ai

�
, yi �

�¹
j i

raj , bjsai, bi

�
,

zi �

�¹
j i

raj , bjsaibi, a
�1
i

�
, wi �

�¹
j i

raj , bjsaibia
�1
i , b�1

i

�
.

When we differentiate the sum xi � yi � zi � wi using (1.3.1), we obtain

B2pxi � yi � zi � wiq � ai � a�1
i � bi � b�1

i �
¹
j i

rai, bis �
¹

j i�1

rai, bis.

So, if we further introduce εi � pai, a
�1
i q � pbi, b

�1
i q � 2p1, 1q, then we can compute B2εi � ai �

a�1
i � bi � b�1

i and thus

B2

�
ģ

i�1

xi � yi � zi � wi � εi

�
� 1�

g¹
i�1

rai, bis.

Similarly, the 2-chain γ P C2pπg,nq � Zrπg,n � πg,ns defined by

γ � pc1, c2q � pc1c2, c3q � . . .� pc1 � � � cn�1, cnq � p1, 1q

satisfies B2γ � c1 � � � � � cn � c1 � � � cn � 1. Recalling from (1.4.1) that c1 � � � cn �
±g

i�1rai, bis, we

obtain

B2

�
γ �

ģ

i�1

xi � yi � zi � wi � εi

�
�

ņ

i�1

ci.
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From here, using (1.3.7), we can easily that the relative 2-chain�
γ �

ģ

i�1

xi � yi � zi � wi � εi, pc1, . . . , cnq

�
P C2pπg,n, Bπg,n,Zq � Zrπg,n � πg,ns ` ZrBπg,ns

(1.4.2)

is closed. Its homology class will be denoted by rπg,n, Bπg,ns P H2pπg,n, Bπg,n,Zq. This notation is

justified by the following lemma.

Lemma 1.4.3. The homology class rπg,n, Bπg,ns is a fundamental class for the pair pπg,n, Bπg,nq.

Proof. Recall that we defined Bπg,n as the collection of 1-parameter subgroups of πg,n generated

by c1, . . . , cn. The subgroup generated by ci will be denoted by Biπg,n and its inclusion inside πg,n

by ıi : Biπg,n ãÑ πg,n. The long exact sequence (1.3.9) in group homology for the pair pπg,n, Bπg,nq

contains the subsequence

. . .Ñ H2pπg,n,Zq ÝÑ H2pπg,n, Bπg,n,Zq
r
ÝÑ H1pBπg,n,Zq

`ıiÝÑ H1pπg,n,Zq Ñ . . . .

Since H2pπg,n,Zq � 0, the connecting morphism r is injective and Ker`ıi � H2pπg,n, Bπg,n,Zq � Z.
Recall from Section 1.3.5 that r comes from the restriction on the chain complex level. This means

that rprπg,n, Bπg,nsq � rpc1, . . . , cnqs P H1pBπg,n,Zq. Also recall thatH1pBπg,n,Zq �
Àn

i�1 H1pBiπg,n,Zq.
By definition of the relative bar complex, H1pBiπg,n,Zq � ZrBiπg,ns{pg � h � ghq. Since Biπg,n is

the 1-parameter subgroup of πg,n generated by ci, we conclude that H1pBiπg,n,Zq � Z and that

under this identification rprπg,n, Bπg,nsq � p1, . . . , 1q P Zn.

Similarly, we observe that H1pπg,n,Zq � Zrπg,ns{pg � h � ghq which gives H1pπg,n,Zq �
Z2g�n�1. Under these identifications, the morphism `ıi : Zn Ñ Z2g�n�1 is the map pa1, . . . , anq ÞÑ

p0, . . . , 0, a1 � an, . . . , an�1 � anq. We conclude that the isomorphism r : H2pπg,n, Bπg,n,Zq Ñ
Ker`ıi, seen as a map Z Ñ Zn, is a ÞÑ pa, . . . , aq. This shows that rprπg,n, Bπg,nsq is a gener-

ator of Ker`ıi, from which we deduce that rπg,n, Bπg,ns is a fundamental class.

Lemma 1.4.3 holds true for any g ¥ 0 and any n � 0. For instance, when n � 0 we obtain a

fundamental class for closed surface groups rπg,0s P H2pπg,0,Zq given by the homology class of the

2-chain
°g

i�1 xi�yi�zi�wi�εi. Also, the case g � 0 corresponds to the case of punctured spheres

and the fundamental class rπ0,n, Bπ0,ns P H2pπg,0,Zq is given by the homology class of the 2-chain

pγ, pc1, . . . , cnqq. Similar computations of fundamental classes can be found in [Gol84, Sec. 3] in

the case n � 0 and in [GHJW97, Sec. 2] for the general case, see also [GR98] for an account of all

cases.
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Chapter 2

Representation varieties

Overview

Before introducing character varieties, we will first study representation varieties. In short, a

representation variety is an analytic, sometimes algebraic, object associated to a finitely generated

group Γ and a Lie group G. It consists of all group homomorphisms from Γ to G. We will explain

where the analytic and algebraic structures of representation varieties come from in Section 2.1

and some of their basic symmetries in Section 2.2. Further down in Section 2.3, we will discuss

the tangent spaces to representation varieties, as well as their smooth points the case where Γ is a

surface groups in Section 2.4.

2.1 Definition

Definition 2.1.1 (Representation variety). The representation variety associated to a finitely

generated group Γ and a Lie group G is the set of group homomorphisms from Γ to G and is

denoted by

HompΓ, Gq.

The elements ϕ P HompΓ, Gq are called representations.

The topology on the representation variety HompΓ, Gq is defined to be the subspace topology

induced by the compact-open topology on the space GΓ of all (necessarily continuous) functions

Γ Ñ G. The resulting topology on HompΓ, Gq can also be described using a system of generators

as follows. For any set of generators pγ1, . . . , γnq of Γ, we introduce the subspace

XpΓ, Gq :�
 �
ϕpγ1q, . . . , ϕpγnq

�
: ϕ P HompΓ, Gq

(
� Gn.

Lemma 2.1.2. Let G be a Lie group equipped with an analytic atlas. The set XpΓ, Gq is an

analytic subvariety1 of Gn and is homeomorphic to HompΓ, Gq. In particular, HompΓ, Gq has a

natural structure of analytic variety and the structure does not depend on the choice of generators

of Γ.

1An analytic variety is understood to be the zero locus of a set of analytic functions over R or C.
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Proof. Let R � triu denote a (maybe infinite) set of relations for the generators γ1, . . . , γn. Each

relation ri defines an analytic map ri : G
n Ñ G because multiplication and inverse are assumed to

be analytic operations on G. The map ri is called a word map. The set XpΓ, Gq is the analytic

subset of Gn cut out by the relations ripg1, . . . , gnq � 1 for every i.

Since a group homomorphism ϕ : Γ Ñ G is determined by the images of a set of generators of

Γ, the map

Π: HompΓ, Gq Ñ XpΓ, Gq

ϕ ÞÑ
�
ϕpγ1q, . . . , ϕpγnq

�
is a bijection. We prove that Π is a homeomorphism. Recall that all the sets

V pK,Uq :� tf : ΓÑ G : K � Γ finite, U � G open, fpKq � Uu

form a sub-basis for the compact-open topology on HompΓ, Gq. To see that Π is a continuous map,

observe that, for a collection of open sets U1, . . . , Un � G,

Π�1 pXpΓ, Gq X U1 � . . .� Unq � HompΓ, Gq X
n£

i�1

V ptγiu, Uiq.

To prove that the inverse map Π�1 is also continuous, note that any element k P Γ, seen as a word

in the generators γ1, . . . , γn, determines an analytic function k : Gn Ñ G. Now, given a finite set

K � Γ and an open set U � G, we have

Π pHompΓ, Gq X V pK,Uqq � XpΓ, Gq X
£
kPK

k�1pUq.

We conclude that both Π and its inverse are continuous. Hence, Π is a homeomorphism.

If pγ11, . . . , γ
1
n1q is another set of generators of Γ and X 1pΓ, Gq is the associated space, then the

map from XpΓ, Gq to X 1pΓ, Gq defined as the composition

XpΓ, Gq Ñ HompΓ, Gq Ñ X 1pΓ, Gq

is an isomorphism of analytic varieties. Indeed, the map sends
�
ϕpγ1q, . . . , ϕpγnq

�
to

�
ϕpγ11q, . . . , ϕpγ

1
n1q

�
.

Now, since γ1i is a word in the generators γ1, . . . , γn, it follows that ϕpγ
1
iq is a word in ϕpγ1q, . . . , ϕpγnq.

This shows that the map is analytic because word maps are analytic by assumption on G.

Lemma 2.1.3. Assume that G has the structure of a real or complex algebraic group, then XpΓ, Gq

is an algebraic subset of Gn. In particular, HompΓ, Gq has a natural structure of real or complex

algebraic variety and the structure does not depend on the choice of generators of Γ.

Proof. The argument is analogous to the proof of Lemma 2.1.2. The key observation is that the

relations R � triu give regular maps ri : G
n Ñ G by assumption on G.

Remark 2.1.4 (Finitely generated versus finitely presented). Since we assumed Γ to be finitely

generated, and not finitely presented, the set of equations that define XpΓ, Gq might be infinite.

28



However, Hilbert’s basis theorem implies that any algebraic variety over a field can be described as

the zero locus of finitely many polynomial equations, see e.g. [SKKT00, §2.2].

Remark 2.1.5 (Standard topology versus Zariski topology). If G is a real or complex algebraic

group, then it is also a Lie group, as mentioned earlier. This means that the representation variety

HompΓ, Gq has both the structure of an analytic variety and of an algebraic variety. The underlying

topology of the analytic structure is called the standard topology and that of the algebraic structure

the Zariski topology. The standard topology on an algebraic variety is always Hausdorff. The

Zariski topology is coarser than the standard topology. Indeed, Zariski open sets are open in the

standard topology because polynomials are continuous functions. A nonempty Zarsiki open set is

also dense in both the standard and the Zariski topology.

Example 2.1.6. One occasion where one may encounter representations of finitely generated

groups into Lie groups in the nature is by studying pG,Xq structures. This is because the holon-

omy of a pG,Xq structure on a surface Σg,n is a morphism π1Σg,n Ñ G. Not all the represen-

tations π1Σg,n Ñ G are holonomies of pG,Xq structures on Σg,n. However, if n � 0, then the

set of holonomies is an open subset of Hompπ1Σg,0, Gq [Gol21, Cor. 7.2.2]. In the case where

G � PSLp2,Rq and X � H, then the holonomies of pPSLp2,Rq,Hq structures (commonly known

as hyperbolic structures) on a closed surface Σg,0 with g ¥ 2 are precisely the discrete and faith-

ful representations of Hompπ1Σg,0,PSLp2,Rqq. It is interesting to note that holonomies of pG,Xq

structures is only well-defined up to conjugation by an element of G, foreshadowing the notion of

character varieties. For more information on pG,Xq structures, the reader may consult Goldman’s

book [Gol21].

In the vocabulary of category theory, we can say that a representation variety is a bifunctor

from the product of the category of finitely generated groups and the category of Lie/algebraic

groups to the category of analytic/algebraic varieties. This is a consequence of Lemmata 2.1.2 and

2.1.3, and of the following.

Lemma 2.1.7. Let Γ be a finitely generated group and G be a Lie/algebraic group.

1. If τ : Γ1 Ñ Γ2 is a morphism of finitely generated groups, then the induced map τ� : HompΓ2, Gq Ñ

HompΓ1, Gq is an analytic/regular map.

2. If r : G1 Ñ G2 is a morphism of Lie groups or of algebraic groups, then the induced map

r� : HompΓ, G1q Ñ HompΓ, G2q is an analytic map or a regular map, respectively.

Proof. The second assertion is immediate. To prove the first statement, note that if pγ1
1 , . . . , γ

1
nq is

a set of generators for Γ1 and pγ2
1 , . . . , γ

2
mq is a set of generators for Γ2, then pτ

�ϕqpγ1
i q � ϕpτpγ1

i qq

is a word in ϕpγ2
1q, . . . , ϕpγ

2
mq. Word maps are analytic, respectively regular, and thus so is τ�.

2.2 Symmetries

The representation variety HompΓ, Gq has two natural symmetries given by the right action of

the group AutpΓq of automorphisms of Γ by pre-composition and the left action of AutpGq by

post-composition:

AutpGq ýHompΓ, Gq üAutpΓq.
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An immediate consequence of Lemma 2.1.7 is

Lemma 2.2.1. The actions of the groups AutpΓq and AutpGq on HompΓ, Gq preserve its ana-

lytic/algebraic structure.

There is a normal subgroup of AutpGq that is of particular interest: namely, the subgroup

of inner automorphisms of G, denoted InnpGq. Recall that an inner automorphism of G is an

automorphism given by conjugation by a fixed element of G. In particular, InnpGq � G{ZpGq,

where ZpGq denotes the centre of G that we introduced in Section 1.1.

Remark 2.2.2. We want to point out that if G is semisimple, then InnpGq is a finite index subgroup

of AutpGq. This can be seen as follows. First, assume that G is also simply connected. In

that case, the map AutpGq Ñ Autpgq induced by derivation is an isomorphism of Lie groups, see

e.g. [Ser06, Part II, Chap. V, §8, Thm. 1]. So, it is sufficient to prove the statement on the level

of Lie algebras. If g is semisimple, then the Lie algebras of Innpgq and Autpgq are isomorphic, see

e.g. [HN12, Thm. 5.5.14]. Hence, Innpgq is a finite index subgroup of Autpgq, and the same holds

for InnpGq and AutpGq. If G is not simply connected, then one considers the simply connected

cover rG of G (see [HN12, Thm. §9.5]). Because of lifting properties, there is an injective map

AutpGq{ InnpGq ãÑ Autp rGq{ Innp rGq. This concludes the argument.

The action of InnpGq on HompΓ, Gq is relevant in many concrete cases. For instance, the

holonomy representations mentioned in Example 2.1.6 are really defined up to conjugation by an

element of G and so it makes sense to see them as elements of the quotient

HompΓ, Gq{ InnpGq. (2.2.1)

The quotient (2.2.1) is our first prototype of character variety for the pair pΓ, Gq.

The action of AutpΓq on the representation variety descends to an action of AutpΓq{ InnpΓq on

the quotient (2.2.1). The group AutpΓq{ InnpΓq is denoted OutpΓq and is called the group of outer

automorphisms of Γ.

Example 2.2.3. The group of outer automorphisms of the surface group π1Σg,n has a particular

significance. It contains the pure mapping class group of the surface Σg,n as a subgroup. This is

known as the Dehn–Nielsen-Baer Theorem. We develop this observation further in Section 7.2.

2.3 Tangent spaces

In this section, we would like to determine the tangent spaces to representation varieties. Since

representation varieties are not smooth manifold in general, but only analytic varieties, we need

a notion of tangent spaces that fits our setting. We could try to work with the notion of Zariski

tangent spaces for analytic varieties. Recall that when X � Rn is an analytic variety defined as the

zero locus of finitely many analytic functions f1, . . . , fm : Rn Ñ R, then its Zariski tangent space

at x P X is the kernel of the m� n Jacobi matrix�
Bfi
Bxj

pxq



i,j

. (2.3.1)
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It’s worth observing that the Zariski tangent space at x contains all the vectors x1p0q tangent to

a smooth path xptq inside Rn with xp0q � x and satisfying the relations fi � 0 up to first order

for every i � 1, . . . ,m, by which we mean that fipxp0qq � 0 and d
dt

��
t�0

fipxptqq � 0. However, it

is not true in general that every vector in the Zariski tangent space at x is tangent to a smooth

deformation of x as above. For instance, when X � R is the analytic variety defined as the zero

locus of the function fpxq � x2, then X consists of a single point at which the Zariski tangent space

is one dimensional. There are also examples where X is a representation variety and the Zariski

tangent space at isolated representations (aka. rigid representations) has positive dimension, such

as the one described in [Mar22, Sec. 4.2.4].

Even if representation varieties are analytic varieties cut out by finitely many equations as we

explained in Lemma 2.1.2, in order to get finitely many equations, one has to choose a system of

generators for Γ. As we prefer to avoid picking a system of generators for Γ, we will use the notion

of Zariski tangent spaces for ringed spaces instead of that for analytic varieties. This will allow us

to talk about Zariski tangent spaces for analytic sub-varieties of the infinite product GΓ. This is

the approach followed by Karshon in [Kar92] and by Lawton in [Law09].

Definition 2.3.1 (Real valued ringed space). A real valued ringed space is a topological space X

with a sheaf R of real valued functions called admissible functions. Most of the time, we will use

smooth functions instead of admissible functions. The Zariski tangent space to X at x is the vector

space pMx{M2
xq
�, where Mx denotes the germs of admissible functions at x that vanish at x.

Examples of real valued ringed spaces include smooth manifolds together with the sheaf of

smooth real valued functions, analytic varieties together with the sheaf of analytic functions or

algebraic varieties together with the sheaf of regular maps. Zariski tangent spaces for real valued

ringed spaces generalize the notion of tangent spaces for manifolds and that of Zariski tangent

spaces for analytic and algebraic varieties.

We start by describing a sheaf of admissible functions for GΓ. We will call a function GΓ Ñ R
locally smooth if it is locally a smooth function of a finite number of coordinates. In other words,

we are defining the sheaf C8pGΓq of locally smooth functions on GΓ as the direct limit of the

sheaves C8pGIq of smooth functions on the manifold GI , where I � Γ is a finite set. The space

GΓ, together with the sheaf C8pGΓq defined above, is a real valued ringed space in the sense of

Definition 2.3.1.

Lemma 2.3.2. The Zariski tangent space to GΓ at any point identifies with gΓ.

Proof. In this case, the Zariski tangent to space to GΓ at f can be identified with the vector space

of all tangents to smooth deformations of f . An isomorphism between TfG
Γ and gΓ can then be

defined as follows. Given u P gΓ, consider the 1-parameter family of maps expptuqf which defines a

deformation of f inside GΓ. Here exp: g Ñ G denotes the Lie exponential map. For more details,

the reader may consult [Kar92, Sec. 2.3] or [Law09, Sec. 3.2].

The representation variety HompΓ, Gq is the closed subspace of GΓ cut out by the equations

Fx,ypfq :� fpxyqfpyq�1fpxq�1 � 1, @x, y P Γ.
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We define a sheaf of smooth functions on HompΓ, Gq as follows. If U � GΓ is an open subset, then

we associate to the open subset U XHompΓ, Gq of HompΓ, Gq the quotient ring C8pUq{pφ � Fx,y :

x, y P Γq, where φ : GÑ R is any smooth function with φp1q � 0 and C8pUq comes from the sheaf

of smooth functions on GΓ. This equips HompΓ, Gq with the structure of a ringed space.

Previously, in the context of Lemma 2.1.2, we explained that HompΓ, Gq inherits its structure

from the embedding inside Gn that depends on a choice of generators for Γ. In contrast, the

embedding HompΓ, Gq � GΓ does not require to fix a set of generators for Γ.

Lemma 2.3.3 ([Kar92]). Fix a set of n generators of Γ and let Fn be the free group on n generators.

The following diagram is a commutative diagram of real valued ringed spaces.

Gn

HompΓ, Gq GFn

GΓ

In particular, the structures induced by Gn and GΓ on HompΓ, Gq coincide.

We refer the reader to [Kar92] for a proof of Lemma 2.3.3. Observe that the inclusion HompΓ, Gq �

GΓ of ringed spaces induces an inclusion of their Zariski tangent spaces Tϕ HompΓ, Gq � gΓ. We

want now to determine the Zariski tangent space Tϕ HompΓ, Gq. It follows from the definition of

the ringed space structure on HompΓ, Gq that the Zariski tangent space Tϕ HompΓ, Gq is the inter-

section of the kernels of the linear forms DϕFx,y : g
Γ Ñ g for all x, y P Γ (each tangent space to G

is naturally identified to g via left translation).

Lemma 2.3.4. It holds that

DϕFx,ypvq � vpxyq � vpxq �Adpϕpxqqvpyq

for v P gΓ and ϕ P HompΓ, Gq.

Proof. By definition, we have that

DϕFx,ypvq �
d

dt

����
t�0

Fx,ypexpptvqϕq

�
d

dt

����
t�0

expptvpxyqqϕpxyqϕpyq�1 expp�tvpyqqϕpxq�1 expp�tvpxqq

� vpxyq � vpxq �Adpϕpxqqvpyq.

Here exp: gÑ G denotes the Lie exponential map.

Corollary 2.3.5 ([Gol84], [Kar92]). The Zariski tangent space to HompΓ, Gq at ϕ is

Tϕ HompΓ, Gq �
 
v P gΓ : vpxyq � vpxq �Adpϕpxqqvpyq, @x, y P Γ

(
.
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Corollary 2.3.5 can be reformulated in terms of group cohomology.2 A representation ϕ P

HompΓ, Gq equips g with the structure of a Γ-module by

Γ
ϕ
ÝÑ G

Ad
ÝÑ Autpgq.

The resulting Γ-module is denoted by gϕ. The set of 1-cochains in the bar complex that computes

the cohomology of Γ with coefficients in gϕ is C1pΓ, gϕq � gΓ � TϕG
Γ, see Section 1.3.2 for more

details on the bar complex. The space of 1-cocycles is

Z1pΓ, gϕq :�
 
v P gΓ : vpxyq � vpxq �Adpϕpxqqvpyq, @x, y P Γ

(
and thus identifies with Tϕ HompΓ, Gq. The space of 1-coboundaries, defined by

B1pΓ, gϕq :�
 
v P gΓ : Dξ P g, vpxq � ξ �Adpϕpxqqξ, @x P Γ

(
,

also plays a role in this context. They can be identified with the Zarisiki tangent space to the

InnpGq-orbit of ϕ P HompΓ, Gq at ϕ (recall from Section 2.2 that InnpGq acts on the representation

variety by post-composition). We denote this orbit by

Oϕ � HompΓ, Gq.

Proposition 2.3.6 ([Gol84], [Kar92]). The Zariski tangent space to Oϕ at ϕ is

TϕOϕ �
 
v P gΓ : Dξ P g, vpxq � ξ �Adpϕpxqqξ, @x P Γ

(
� B1pΓ, gϕq.

Proof. The orbit Oϕ is a smooth manifold isomorphic to the quotient of G by the stabilizer of ϕ

for the conjugation action. The stabilizer of ϕ is the centralizer Zpϕq :� ZpϕpΓqq of ϕpΓq inside G,

which is a closed subgroup of G. In particular, the Zariski tangent space to Oϕ at ϕ coincides with

the usual notion of tangent space.

A smooth deformation of ϕ inside Oϕ is of the form ϕt � gptqϕgptq�1, where gptq is a smooth

1-parameter family inside G with gp0q � 1. The tangent vector to ϕt at t � 0 is the coboundary

vpxq � ξ � Adpϕpxqqξ where ξ P g is the tangent vector to gptq at t � 0. Conversely, for any ξ P g,

the coboundary vpxq � ξ �Adpϕpxqqξ is tangent to expptξqϕ expp�tξq at t � 0.

The combination of Lemma 2.3.2, Corollary 2.3.5, and Proposition 2.3.6 show that the inclusions

of ringed spaces

Oϕ � HompΓ, Gq � GΓ

2An introduction to group (co)homology, containing all the relevant notions for this work, is provided in Sec-
tion 1.3.
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induces a chain of inclusions on the level of Zariski tangent spaces.

TϕOϕ Tϕ HompΓ, Gq TϕG
Γ

B1pΓ, gϕq Z1pΓ, gϕq C1pΓ, gϕq

� � �

Observe that B1pΓ, gϕq can be identified with the quotient g{zpϕq, where zpϕq is the Lie algebra of

Zpϕq. In particular, it holds that

dimB1pΓ, gϕq � dimOϕ � dimG� dimZpϕq. (2.3.2)

Example 2.3.7 (Surface groups). In the special case where Γ is a closed surface group (Defini-

tion 1.4.1), one can obtain the conclusion of Corollary 2.3.5 from the embedding Hompπg,0, Gq � G2g

coming from the presentation of πg,0 given in (1.4.1). Let ϕ P Hompπg,0, Gq and let Ai :� ϕpaiq and

Bi :� ϕpbiq, where ai and bi are the generators of πg,0 from (1.4.1). The Zariski tangent space to

Hompπg,0, Gq at ϕ is isomorphic to the kernel of the differential of the relation map

F : G2g Ñ G

pX1, . . . , Xg, Y1, . . . , Ygq ÞÑ
g¹

i�1

rXi, Yis (2.3.3)

at pA1, . . . , Ag, B1, . . . , Bgq. A simple computation shows that the kernel of DpAi,BiqF corresponds

to the subset of g2g that consists of all those pα1, . . . , αg, β1, . . . , βgq such that the following expres-

sion vanishes:

�
α1 �AdpA1qβ1

�
�Ad

�
rA1, B1s

��
β1 �AdpB1qα1

�
�Ad

�
rA1, B1s

��
α2 �AdpA2qβ2

�
�Ad

�
rA1, B1srA2, B2s

��
β2 �AdpB2qα2

�
� . . .

�
ģ

i�1

Ad

�
i�1¹
j�1

rAj , Bjs

��
αi �AdpAiqβi

�
�Ad

�
i¹

j�1

rAj , Bjs

��
βi �AdpBiqαi

�
. (2.3.4)

Similar computations can be found in [Lab13, Prop. 5.3.12]. Once again, we identified TAiG � g

and TBiG � g via left translation.

To see the correspondence between this description of the Zariski tangent space and that of

Corollary 2.3.5, we proceed as follows. First, if one defines v : πg,0 Ñ g by vpaiq :� αi and

vpbiq :� βi for some tuple pα1, . . . , αg, β1, . . . , βgq that satisfy (2.3.4), and extend v to all of πg,0 by

vpxyq � vpxq �Adpϕpxqqvpyq, then v defines an element of Z1pπg,0, gϕq. To prove it, it is sufficient

to check that v
�±

rai, bis
�
� 0. If one develops v

�±
rai, bis

�
using vpxyq � vpxq � Adpϕpxqqvpyq

and vprx, ysq � vpxyq � Adpϕprx, ysqqvpyxq, then one gets that v
�±

rai, bis
�
� 0 is equivalent

to (2.3.4) vanishing. Conversely, given v P Z1pπg,0, gϕq, then pvpa1q, . . . , vpagq, vpb1q, . . . , vpbgqq

satisfies (2.3.4) by the same argument as above.
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2.4 Smooth points

Smooth points of analytic varieties in Rn are defined as follows.

Definition 2.4.1 (Smooth points). A point x of an analytic variety X � Rn is a smooth point if

there is an open neighbourhood U � X of x such that U is an embedded submanifold of Rn.

Using the Implicit Function Theorem, we can reformulate the condition and say that x is a

smooth point of X if and only if the rank of the Jacobi matrix (2.3.1) at x is maximal. By the

Rank-Nullity Theorem, this happens if and only if the dimension of the Zariski tangent space to X

at x is minimal. If every point of an analytic variety is smooth, then it is an analytic manifold.

In the context of representation varieties, we will use the characterization of smooth points as

the ones that minimize the dimension of the Zariski tangent space. For instance, if Γ is a free

group, then HompΓ, Gq is an analytic manifold because of the absence of relations (recall from

Lemma 2.1.2 that representation varieties are analytic varieties).

Lemma 2.4.2. The set of smooth points of HompΓ, Gq is invariant under the InnpGq-action.

Proof. The action of G on itself by conjugation is analytic. Therefore, it preserves smooth neigh-

bourhoods of points inside HompΓ, Gq. We can give an alternative argument by observing that the

Zariski tangent spaces at ϕ and gϕg�1 are isomorphic as Γ-modules, hence have the same dimension.

The isomorphism is given by

Z1pΓ, gϕq Ñ Z1pΓ, ggϕg�1q

v ÞÑ Adpgqv.

2.4.1 Surface groups

It is hard to formulate a statement about smooth points of representation varieties for an arbitrary

finitely generated group Γ. However, when Γ � πg,0 is a closed surface group and G is quadrable,

it is possible to describe the smooth points of the representation variety explicitly.

Proposition 2.4.3 ([Gol84]). Let G be a quadrable Lie group. The dimension of the Zarisiki

tangent space to Hompπg,0, Gq at ϕ is

dimZ1pπg,0, gϕq � p2g � 1qdimG� dimZpϕq.

In particular, all the representations ϕ with3

dimZpGq � dimZpϕq,

where ZpGq denotes the centre of G and Zpϕq is the centralizer of ϕpπg,0q inside G, minimize the

dimension of their Zariski tangent space.

Proof. We compute the dimension of the Zariski tangent space to Hompπg,0, Gq at ϕ. We use the

identification with Z1pπg,0, gϕq provided by Corollary 2.3.5. Recall that the group cohomology of

3Compare with Section 3.1.
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πg,0 with coefficients in gϕ is isomorphic to the de Rham cohomology of the surface Σg,0 with

coefficients in the flat vector bundle Eϕ associated to gϕ (i.e. the adjoint bundle of the principal

G-bundle prΣg,0 �Gq{πg,0 built from ϕ, see [Gol84] for more details):

H�pπg,0, gϕq � H�
dRpΣg,0, Eϕq.

In particular, it vanishes in degrees larger than 2.

The Euler characteristic

dimH0pπg,0, gϕq � dimH1pπg,0, gϕq � dimH2pπg,0, gϕq (2.4.1)

is independent of ϕ. Indeed, since the spaces of cochains in simplicial cohomology with local

coefficients are finite-dimensional in every degree, the quantity (2.4.1) can be expressed as the

alternating sum of the dimensions of the spaces of cochains. The latter is independent of ϕ, because

the structure of πg,0-module of gϕ only intervenes in the differential, see the definition of the bar

resolution (1.3.2). If ϕ is the trivial representation, then gϕ is the trivial πg,0-module and (2.4.1) is

equal to the Euler characteristic of Σg,0 times the dimension of G. We conclude

dimH1pπg,0, gϕq � p2g � 2q dimG� dimH0pπg,0, gϕq � dimH2pπg,0, gϕq.

Poincaré duality (see Section 1.3.8) implies H2pπg,0, gϕq � H0pπg,0, g
�
ϕq
�. The existence of a non-

degenerate, Ad-invariant, symmetric, bilinear form on g implies that gϕ � g�ϕ as πg,0-modules.

Hence, dimH0pπg,0, gϕq � dimH2pπg,0, gϕq. It is easy to see that H0pπg,0, gϕq is the space of

Adpϕq-invariant elements of g, namely zpϕq. Hence

dimH1pπg,0, gϕq � p2g � 2q dimG� 2 dimZpϕq.

Recall from (2.3.2) that the dimension of B1pπg,0, gϕq is equal to dimG � dimZpϕq. Finally, we

obtain

dimZ1pπg,0, gϕq � p2g � 1q dimG� dimZpϕq.

Since ZpGq � Zpϕq, it holds that dimZpGq ¤ dimZpϕq, and we conclude that ϕ minimizes the

dimension of its Zariski tangent space if and only if dimZpGq � dimZpϕq.

We can alternatively study the smooth points of Hompπg,0, Gq by looking for all the representa-

tions ϕ at which the relation map (2.3.3) is a submersion. We will assume here that G has discrete

centre, i.e. dimZpGq � 0. This is a necessary assumption in order to allow for dimZpϕq � 0 for

some representations ϕ.

Proposition 2.4.4. Let G be a quadrable Lie group with dimZpGq � 0. The differential of the

relation map (2.3.3) is surjective at every representation ϕ P Hompπg,0, Gq with dimZpϕq � 0 is a

submersion. In particular, all such ϕ are smooth points of Hompπg,0, Gq.

Proof. The argument we are about to present can be found in [Lab13, Prop. 5.3.12]. Instead of

relying on the embedding GΓ, we will use the embedding Hompπg,0, Gq � G2g coming from the

presentation (1.4.1).
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The map µ : g2g Ñ g is defined by differentiating (2.3.4) at pA1, . . . , Ag, B1, . . . , Bgq and identi-

fying all tangent spaces with g. A simple computation leads to

µpα1, . . . , αg, β1, . . . , βgq �
ģ

i�1

�¹
j i

Ad
�
rAj , Bjs

��
pαi �AdpAiBiA

�1
i qαiq

�
ģ

i�1

�¹
j¤i

Ad
�
rAj , Bjs

��
pβi �AdpBiAiB

�1
i qβiq.

We let V be the orthogonal complement of the image of µ in g with respect to the Ad-invariant

pairing B coming from the quadrability of G. We will prove that V is equal to the Lie algebra zpϕq

of Zpϕq.

First, observe that the orthogonal complement of zpgq—the Lie algebra of Zpgq—is equal to the

image of the map g Ñ g given by ξ ÞÑ ξ � Adpgqξ. Also recall that Zpghg�1q � gZphqg�1 for any

g, h P G. This shows that V must contain the Lie algebra of

H :�
g£

i�1

¹
j i

Ad
�
rAj , Bjs

��
ZpAiBiA

�1
i q X ZpAiBiAiB

�1
i A�1

i q
�
,

where we used that rAi, BisBiAiB
�1
i rAi, Bis

�1 � AiBiAiB
�1
i A�1

i . We can see that

H �
g£

i�1

¹
j i

Ad
�
rAj , Bjs

�
AdpAiBiq

�
ZpBiq X ZpAiq

�
Now, since AdpAiBiq

�
ZpBiq X ZpAiq

�
� ZpBiq X ZpAiq, we can write H as

g£
i�1

¹
j i

Ad
�
rAj , Bjs

��
ZpBiq X ZpAiq

�
.

So, if h P H, then in particular h P ZpA1q X ZpB1q and h P AdprA1, B1sqpZpA2q X ZpB2qq. We

conclude that h P ZpA1q X ZpB1q X ZpA2q X ZpB2q. Repeating this argument, we obtain that

H �
�g

i�1 ZpAiq X ZpBiq � Zpϕq and so zpϕq � V . The reverse inclusion is obvious. This shows

that µ is surjective whenever zpϕq � t0u, or equivalently dimZpϕq � 0.

We can also recover the dimension count from Proposition 5.3.6 (we do not require the hypothesis

dimZpGq � 0 for this step). We use the Rank-Nullity Theorem to compute the dimension of the

Zariski tangent space at the representation ϕ as

dimZ1pπg,0, gϕq � dimKerpµq

� 2g dimG� dim Impµq

� p2g � 1q dimG� dim ImpµqK

� p2g � 1qdimG� dimZpϕq.

Proposition 2.4.3 applies to closed surface groups. In Proposition 5.3.6 below, we will discuss

an analogous description of smooth points for fundamental groups of punctured surfaces.
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Chapter 3

The conjugation action

Overview

This chapter is an elaboration on the action of InnpGq on HompΓ, Gq by post-composition which was

introduced in Section 2.2. It is quite common to refer to this action as the the conjugation action of

G on the representation variety. We will try to determine when the action is free in Section 3.1 and

when it is proper in Section 3.2. This will lead us to the notions of (very) regular representations,

as well as irreducible and reductive representations. In the last two sections (Sections 3.3 and 3.4),

we will present Procesi’s results on invariant functions and introduce the dual notion of characters.

3.1 Freeness

The action of InnpGq � G{ZpGq on HompΓ, Gq is never free, since the trivial representation is

always a global fixed point. It is easy to see that the stabilizer of a representation ϕ P HompΓ, Gq

is Zpϕq{ZpGq. In particular

Lemma 3.1.1. The InnpGq-action is free on the InnpGq-invariant subset that consists of all the

representations ϕ such that

ZpGq � Zpϕq.

There is a neat characterization of the points where the action is locally free. Recall that the

action of a topological group on a set X is locally free at x P X if the stabilizer of x is discrete. We

will stick the notation introduced previously and write Oϕ for the InnpGq-orbit of a representation

ϕ P HompΓ, Gq.

Proposition 3.1.2 ([Gol84]). The action of InnpGq on HompΓ, Gq is locally free at ϕ if and only

if

dimZpGq � dimZpϕq.

Proof. The action of InnpGq on HompΓ, Gq induces, for any representation ϕ, a surjective linear

map InnpGq Ñ TϕOϕ, where InnpGq denotes the Lie algebra of InnpGq and Oϕ the InnpGq-orbit of

ϕ. The map is given by

ξ ÞÑ
d

dt

����
t�0

expptξqpϕq.
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Observe that the action of InnpGq on HompΓ, Gq is locally free at ϕ if and only if the induced map

InnpGq Ñ TϕOϕ is injective. Since the map is always surjective, this is equivalent to asking that

both spaces InnpGq and TϕOϕ have the same dimension. The dimension of InnpGq is dimG �

dimZpGq and the dimension of TϕOϕ is dimG � dimZpϕq, as computed in (2.3.2). Hence, the

dimensions coincide if and only if dimZpGq � dimZpϕq.

Remark 3.1.3 (Freeness and smooth points). It is striking that the condition of Proposition 3.1.2

to guarantee that the conjugation action is locally free coincides with that of Propositions 2.4.3

and 2.4.4. In other words, the smooth points of Hompπg,0, Gq are precisely those where the action

of InnpGq is locally free.

3.1.1 Regular representations

Proposition 3.1.2 motivates the following definition.

Definition 3.1.4 (Regular representations). A representation ϕ P HompΓ, Gq is called regular if

dimZpGq � dimZpϕq.

We denote by HomregpΓ, Gq the InnpGq-invariant subspace of regular representations. If it further

holds that ZpGq � Zpϕq, we say that ϕ is very regular. The InnpGq-invariant subspace of very

regular representations is denoted by HomvRegpΓ, Gq.

We will see later that if G is a reductive algebraic group in the sense of Definition 1.2.3, then

most representations are regular, see Proposition 3.2.10.

Example 3.1.5. When G � PSLp2,Rq, the representations ϕ : Γ Ñ PSLp2,Rq that are not reg-

ular are of a particular kind. We use the description of centralizers in PSLp2,Rq provided by

Lemma A.2.8 from Appendix A. It tells us that a non-regular representation ϕ : Γ Ñ PSLp2,Rq is
of one of the following kinds:

1. ϕ is the trivial representation.

2. The elements of ϕpΓq are rotations around the same point of H and Zpϕq � PSOp2q.

3. The elements of ϕpΓq fix a common geodesic in H and Zpϕq � R¡0.

4. The elements of ϕpΓq fix the same point in the boundary of H and Zpϕq � R.

As soon as the image of ϕpΓq contains, for instance, two elements of different nature (elliptic,

hyperbolic or parabolic) or two elements of the same nature with different fixed points/geodesics,

then Zpϕq � ZpPSLp2,Rqq is trivial and ϕ is regular, actually very regular. In particular, for

G � PSLp2,Rq, every regular representation is also very regular.

3.2 Properness

The conjugation action of G on HompΓ, Gq is in general not proper.
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Example 3.2.1. Consider the case where Γ � Z and G � PSLp2,Rq. Let ϕ1 : Z Ñ PSLp2,Rq
be the representation given by ϕ1p1q � par� in the notation of (A.2.6). Let ϕ2 denote the trivial

representation. Since the closure of the conjugacy class of any parabolic element of PSLp2,Rq
contains the identity, we observe that

ϕ2 P Oϕ1
∖Oϕ1

and tϕ2u � Oϕ2
.

So, the orbits Oϕ1 and Oϕ2 cannot be separated by disjoint open sets in the (topological) quotient

HompZ,PSLp2,Rqq{ InnpPSLp2,Rqq. In particular, the quotient is not Hausdorff and the conjugacy

action of PSLp2,Rq on HompZ,PSLp2,Rqq is not proper.

3.2.1 Irreducible representations

Example 3.2.1 hints at the pathological behaviour of representations whose image lies in a parabolic

subgroup. This is essentially a worst case scenario, as we explain below.

Definition 3.2.2 (Borel and parabolic subgroups). A Borel subgroup of a complex algebraic group

G is a maximal, Zariski closed, solvable connected subgroup of G. A parabolic subgroup of a (real

or complex) algebraic group G is a Zariski closed subgroup of G that contains a Borel subgroup

over C.

By definition, a Borel subgroup of G is automatically a Borel subgroup of G�. Similarly, P is a

parabolic subgroup of G if and only if P � is a parabolic subgroup of G�. If G is connected, then

all parabolic subgroups are connected [Mil17, Cor. 17.49].

Example 3.2.3. Let G � GLpn,Cq. The subgroup of upper triangular matrices is a Borel subgroup

of G. More generally, the Borel subgroups of GLpn,Cq are the ones that preserve a full flag in Cn

and the parabolic subgroups are those that preserve a (partial) flag in Cn [Bou05, Chap. VIII, §13].

Definition 3.2.4 (Irreducible representations). Let G be an algebraic group. A representation

ϕ : Γ Ñ G is called irreducible if the image of ϕ does not lie in a proper parabolic subgroup of G.

We denote by HomirrpΓ, Gq the InnpGq-invariant subspace of irreducible representations.

Remark 3.2.5. The notion of irreducibility for representations does depend on the underlying field.

There exist representations ϕ : ΓÑ G that are irreducible over R, but reducible over C, see Exam-

ple 3.2.24.

Observe that if G � GLpn,Cq, then ϕ being irreducible in the sense of Definition 3.2.4 is

equivalent to Cn being an irreducible Γ-module (i.e. ϕ is an irreducible representation in the classical

sense). This is a consequence of Example 3.2.3.

Example 3.2.6. Let G � SLp2,Cq. The irreducible representations into SLp2,Cq can be charac-

terized in terms of traces as stated by the following lemma.

Lemma 3.2.7. A representation ϕ : Γ Ñ G is irreducible if and only there exists an element

γ P rΓ,Γs � Γ of the commutator subgroup of Γ such that Trpϕpγqq � 2.
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A proof of Lemma 3.2.7 can be found in [CS83, Lem. 1.2.1]. The argument relies on the following

observation: if A,B P SLp2,Cq are two upper-triangular matrices, then their commutator rA,Bs is

upper-triangular and has trace 2 (i.e. upper-triangular with ones on the diagonal).

Definition 3.2.8 (Irreducible subgroups). A subgroup of an algebraic group G is called irreducible

if it is not contained in a proper parabolic subgroup of G.

Definition 3.2.8 is a generalization of the notion of irreducibility of subgroups of SLp2,Cq in-

troduced in Section 1.2.2. Observe that a representation ϕ : Γ Ñ G is irreducible if and only if its

image is an irreducible subgroup of G. The centralizer of an irreducible subgroup in a reductive

group G is a finite extension of ZpGq [Sik12, Prop. 15] (see also [Sik12, Cor. 17]). We obtain the

following lemma.

Lemma 3.2.9. Let G be a reductive algebraic group. Irreducible representations into G are regular:

HomirrpΓ, Gq � HomregpΓ, Gq.

It is important to note the following statement.

Proposition 3.2.10. Let G be a reductive algebraic group. The subspace of irreducible representa-

tions HomirrpΓ, Gq is Zariski open in the representation variety HompΓ, Gq. Moreover, if Γ � πg,n

is a surface group, then Homirrpπg,n, Gq is dense in a nonempty set of irreducible components of

Hompπg,n, Gq.

We refer the reader to [Sik12, Prop. 27 & 29] for a proof. Observe nevertheless that the second

part of Proposition 3.2.10 follows from the first assertion and from the existence of at least one

irreducible representation. The main result of this section says that if one restricts to irreducible

representations, then the conjugation action of G becomes proper.

Theorem 3.2.11 ([JM87]). Let G be a reductive algebraic group. The InnpGq-action on HomirrpΓ, Gq

is proper.

We refer the reader to [JM87, Prop. 1.1] and references therein for a proof of Theorem 3.2.11.

3.2.2 Good representations

Following [JM87], we call good all the representations that are simultaneously irreducible and very

regular.

Definition 3.2.12 (Good representations). Let G be an algebraic group. A representation ϕ : ΓÑ

G is called good1 if it is irreducible and very regular. We denote by HomgoodpΓ, Gq the InnpGq-

invariant subspace of good representations.

Lemma 3.1.1 implies that the InnpGq-action on HomgoodpΓ, Gq is free and by Theorem 3.2.11

it is also proper. It is, however, not clear a priori whether good representations exist. However,

one can prove the following

1In [JM87] and [Sik12] a good representation is defined to be a very regular reductive representation (see Defini-
tion 3.2.17). If G is reductive, then their definition is equivalent to ours (see Lemma 3.2.19).
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Lemma 3.2.13 ([JM87]). Let G be a reductive algebraic group. The set of good representations

HomgoodpΓ, Gq is Zariski open in the representation variety HompΓ, Gq.

Lemma 3.2.13 is proven in [JM87, Prop 1.3 & Lem. 1.3]. In general, HomgoodpΓ, Gq might not

be a smooth manifold. However, it is the case for closed surface groups by Proposition 2.4.3. We

conclude from Theorem 3.2.11 and Lemma 3.1.1 that

Corollary 3.2.14. Let G be a reductive algebraic group. Let Γ � πg,0 be a closed surface group.

The space of good representations Homgoodpπg,0, Gq is an analytic manifold of dimension p2g �

1q dimG� dimZpGq. The InnpGq-action on Homgoodpπg,0, Gq is proper and free, and the quotient

Homgoodpπg,0, Gq{ InnpGq

is an analytic manifold of dimension p2g � 2q dimG� 2 dimZpGq.

Note that the dimension of the quotient in Corollary 3.2.14 is always even. This observation

will be relevant later in Section 5 when we discuss the symplectic nature of character varieties.

3.2.3 Reductive representations

The notion of irreducible representations can be generalized to the notion of reductive representa-

tions, sometimes called completely reducible representations too.

Definition 3.2.15 (Linearly reductive groups). An algebraic group is called linearly reductive if

all its finite-dimensional representations are completely reducible.

Equivalently, over the fields of real or complex numbers, an algebraic group G is linearly reduc-

tive if and only if the algebraic subgroup that consists of the identity component for the Zariski

topology is reductive [Mil17, Cor. 22.43].

Definition 3.2.16 (Completely reducible subgroups). A subgroup of an algebraic group is called

completely reducible if its Zariski closure is linearly reductive.

Definition 3.2.17 (Reductive representations). Let G be an algebraic group. A representation

ϕ : Γ Ñ G is called reductive (or completely reducible) if ϕpΓq � G is completely reducible. We

denote by HomredpΓ, Gq the InnpGq-invariant subspace of reductive representations.

In particular, a representation ϕ : Γ Ñ GLpn,Cq is reductive if and only if Cn is a completely

reducible Γ-module (i.e. a direct sum of irreducible Γ-modules). Equivalently, ϕ : Γ Ñ GLpn,Cq is
reductive if and only if every Γ-invariant subspace of Cn has a Γ-invariant complement.

We defined irreducible representations Γ Ñ G to be those whose image is not contained in a

parabolic subgroup of G (Definition 3.2.4). Using the notion of Levi subgroups2 of G (see e.g. [Sik12,

§3]), one could also define reductive representations as those representations ϕ : Γ Ñ G with the

property that if ϕpΓq is contained in a parabolic subgroup P of G, then it is actually contained in

a Levi subgroup L � P .

2The reader who wishes to learn more about Levi subgroups could have a look at [Sik12, §3]. We recall nevertheless
that when G � GLpn,Cq and P is a parabolic subgroup of G stabilizing some flag F1 � � � � � Fr, then a Levi subgroup
L of P consist of the elements of P that preserve a decomposition F1 � E1, F2 � E1 `E2, . . ., Fr � E1 ` � � � `Er.
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Lemma 3.2.18. Let G be a reductive algebraic group. Irreducible representations ϕ : Γ Ñ G are

reductive:

HomirrpΓ, Gq � HomredpΓ, Gq.

Proof. The proof relies on the observation that irreducible subgroups of reductive algebraic groups

are completely reducible. This is proved in [Sik12, §3] using the notion of Levi subgroups.

The converse of Lemma 3.2.18 is not true in general. However, the following holds.

Lemma 3.2.19. Let G be a reductive algebraic group. A reductive representation into G is irre-

ducible if and only if it is regular:

HomirrpΓ, Gq � HomredpΓ, Gq XHomregpΓ, Gq.

The reader is referred to [Sik12, Cor. 17] for a proof of Lemma 3.2.19. Reductive representations

can be characterized as follows:

Proposition 3.2.20. Let G be a reductive algebraic group. A representation ϕ : ΓÑ G is reductive

if and only if the the InnpGq-orbit Oϕ of ϕ is closed in HompΓ, Gq.

A proof of Proposition 3.2.20 can be found in [Sik12, Thm. 30], based on an argument of

[JM87]. An immediate consequence of Proposition 3.2.20 is that the points of the topological

quotient HomredpΓ, Gq{ InnpGq are closed, i.e. it is a T1 space.3

Proposition 3.2.21 ([RS90]). Let G be a reductive algebraic group. The topological quotient

HomredpΓ, Gq{ InnpGq

is Hausdorff.

The reader is referred to [RS90, §7.3] and references therein for a proof of Proposition 3.2.21.

3.2.4 Zariski dense representations

Some authors favour the notion of Zariski dense representations over irreducible representations,

see for instance [Lab13] or [Mon16].

Definition 3.2.22 (Zariski dense representations). Let G be an algebraic Lie group. A repre-

sentation ϕ P HompΓ, Gq is called Zariski dense if ϕpΓq is a Zariski dense subgroup of G. It

is called almost Zariski dense if the Zariski closure of ϕpΓq contains G�. The InnpGq-invariant

spaces of Zariski dense and almost Zariski dense representations are denoted HomZdpΓ, Gq and

HomaZdpΓ, Gq, respectively.

Recall that a subgroup H of an algebraic groups G is Zariski dense if and only if any regular

function that vanishes on H also vanishes on G.

Lemma 3.2.23. Let G be an algebraic Lie group. Almost Zariski dense representations are irre-

ducible:

HomaZdpΓ, Gq � HomirrpΓ, Gq.
3See Section 4 for a reminder of some notions of separability.
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Proof. Let ϕ : Γ Ñ G be almost Zariski dense. By definition, the Zariski closure of ϕpΓq contains

G�. In particular, no proper parabolic subgroups of G� can contain the identity component of

the Zariski closure of ϕpΓq. Since parabolic subgroups are by definition Zariski closed, no proper

parabolic subgroup of G can contain ϕpΓq.

Example 3.2.24. Let α1, . . . , αn P p0, 2πq
n be angles such that α1�. . .�αn � 2kπ for some integer

k. Let Fn � xa1, . . . , any denote the free group on n generators. We consider the representation

ϕ : Fn Ñ PSLp2,Rq defined by ϕpaiq � rotαi
in the notation of (A.2.2). The representation ϕ is not

Zariski dense because its image lies inside PSOp2,Rq which is Zariski closed in PSLp2,Rq. However,

ϕ is irreducible as one can check that ϕpΓq has no fixed point in RP1 � R2{R�. Consider now

the representation ϕ defined as the composition of ϕ with the inclusion PSLp2,Rq � PSLp2,Cq.
Observe that ϕ : Fn Ñ PSLp2,Cq is reducible since it fixes r1 : is P CP1 � C2{C�, and it is again

not Zariski dense because its image lies inside PSOp2,Cq which is Zariski closed in PSLp2,Cq.

Remark 3.2.25. It was established in Lemma 3.2.23 that Zariski dense representations into any

algebraic group are irreducible. The converse statement for SLp2,Cq can sometimes be found in

the literature, see e.g. [Mon16, Rem. 2.13]. It is not true. For instance, given a finite non-abelian

subgroup G of SLp2,Cq of order g, then there is a surjective group homomorphism Fg Ñ G, where

Fg � xγ1, . . . , γgy is the free group on g generators. The fundamental group of a closed surface of

genus g maps surjectively to Fg by ai, bi ÞÑ γi, where ai, bi refer to the presentation (1.4.1). We

obtain two irreducible representations πg,0 Ñ SLp2,Cq and Fg Ñ SLp2,Cq that are not Zariski

dense.

Lemma 3.2.26. Let G be an algebraic group such that ZpGq � ZpG�q. If ϕ P HomaZdpΓ, Gq, then

ϕ is very regular, i.e.

ZpGq � Zpϕq.

In particular, almost Zariski dense representations are good:

HomaZdpΓ, Gq � HomgoodpΓ, Gq.

Proof. The argument is taken from [Lab13, §5.3]. Denote by ZpZpϕqq the centralizer of Zpϕq �

ZpϕpΓqq in G. It is a Zariski closed subgroup of G that contains ϕpΓq. Hence, by almost Zariski

density of ϕpΓq, it holds G� � ZpZpϕqq and thus Zpϕq � ZpG�q. Since we assumed ZpG�q � ZpGq,

we conclude that ZpGq � Zpϕq. It now follows from 3.2.23 that almost Zarsiki dense representations

are good.

It follows from Theorem 3.2.11 and Lemma 3.2.23 that, for a reductive algebraic group G (hence

connected) and Γ � πg,0 a closed surface group, the InnpGq-action on the subspace of Zariski dense

representations is free and proper, compare [Lab13, Thm. 5.2.6] and [Mon16, Lem. 2.10]. It is

interesting to note that the resulting quotient, at least in the case when ZpGq is finite, has the

same dimension as the quotient from Corollary 3.2.14.
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3.2.5 Summary

We summarize all the different notions of representations introduced above in the form of a Venn

diagram depicted in Figure 3.1.

reductive

regular♡

irreducible♠,♡,♦

good♠,♥,♦ very regular♥

Zd♥,♦

♠ : Zariski open

♡ : locally free

♥ : free

♦ : proper

Figure 3.1: We assume for simplicity that G is a reductive algebraic group (hence connected). The
two largest families of representations are the regular and the reductive ones. Their intersection is
the set of irreducible representations. A representation that is irreducible and very regular is called
good. Zariski dense representations are good.

3.3 Invariant functions

Definition 3.3.1 (Invariant functions). We say that a function HompΓ, Gq Ñ K for some field

K (typically R or C) which is invariant under the conjugation action of G is called an invariant

function of the representation variety.

In this section, we will focus on algebraic groups G over K P tR,Cu. Recall that when this is

case, then HompΓ, Gq inherits the structure of algebraic variety. The algebra of regular functions

on the variety HompΓ, Gq— also known as its coordinate ring—is denoted KrHompΓ, Gqs and the

subalgebra of invariant functions is denoted by

KrHompΓ, GqsG.

We are interested in describing a generating family for KrHompΓ, GqsG. In this context, “generate”

should be understood in the algebraic sense; that is, a generating family is a collection of invari-

ant functions such that any invariant function can be written as a polynomial expression in the

generating functions.
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Remark 3.3.2. It is worth recalling Nagata’s Theorem at this stage which implies that, if G is a

reductive algebraic group over C, then CrHompΓ, GqsG is finitely generated, see for instance [Dol03,

Thm. 3.3].

There is standard way to construct invariant functions HompΓ, Gq Ñ K from a conjugacy

invariant function f : G Ñ K. Pick an element γ P Γ and define the function fγ : HompΓ, Gq Ñ K
by fγpϕq � fpϕpγqq. To make our life easier, we will only consider the case where G is a linear

algebraic group G � GLpm,Kq. In that case, classical examples of conjugacy invariant functions

G Ñ K include the trace Tr: G Ñ K or the determinant det : G Ñ K�. The invariant functions

constructed from the trace will play a central role.

Definition 3.3.3 (Trace functions). When γ P Γ, we call the invariant function

Trγ : HompΓ, Gq Ñ K

ϕ ÞÑ Trpϕpγqq.

the trace function of γ. We denote by T pΓ, Gq the subalgebra of CrHompΓ, GqsG generated by trace

functions.

Example 3.3.4. It is known since Fricke and Vogt that CrHompΓ,SLp2,CqqsSLp2,Cq is gener-

ated by the trace functions Trγ for γ P Γ. In this case, since SLp2,Cq enjoys the trace relation

Trγ1γ2
�Trγ�1

1 γ2
� Trγ1

Trγ2
for any γ1, γ2 P Γ, we observe that CrHompΓ,SLp2,CqqsSLp2,Cq is

linearly generated by trace functions. We will elaborate on the case of SLp2,Cq below in Exam-

ple 3.3.10.

The next sections are dedicated to trying to understand better the relation between T pΓ, Gq
and CrHompΓ, GqsG.

3.3.1 Procesi’s fundamental theorems of invariants

Procesi studied the “invariants of n-tuples of m�m matrices” in [Pro76]. This can be made precise

with the following notation. Let K denote either the field of real or complex numbers. We denote by

MmpKq the algebra of m�m matrices with coefficients in K. Let MmpKqn �MmpKq� . . .�MmpKq
and KrMmpKqns be the algebra of polynomial functions in n matrix variables ξk � pxk

i,jqi,j�1,...,m.

The group GLpm,Kq acts diagonally on MmpKqn by conjugation. For any subgroup G � GLpm,Kq,
the subalgebra of KrMmpKqns that consists of G-invariant polynomials is denoted KrMmpKqnsG

and called the algebra of invariant.

In the notation of representation varieties, MmpKqn is replaced by HompFn,MmpKq where Fn

denotes the free group on n generators, and KrMmpKqnsG � KrHompFn,MmpKqsG. Depending on

G, KrMmpKqnsG may contain more or less functions. For instance, when G � SOpm,Kq, then the

function MmpKq2 Ñ K defined by pX,Y q ÞÑ TrpXY tq is invariant under SOpm,Kq conjugation,

but not under conjugation by the larger group SLpm,Kq. Procesi proved the following the following

statement about system of generators for MmpKq2 Ñ K [Pro76, Thm. 3.4].

Theorem 3.3.5 (Procesi’s First Fundamental Theorem). The following hold:
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� If G P tGLpm,Kq,SLpm,Kqu, then KrMmpKqnsG is finitely generated by trace polynomials

TrpW q, where W is a reduced word in ξ1, . . . , ξn of length at most 2m � 1.

� If G P tOpm,Kq,SOpm,Kqu, then KrMmpKqnsG is finitely generated by trace polynomials

TrpW q, where W is a reduced word of length at most 2m�1 in ξ1, . . . , ξn and their orthogonal

transposes.4

� If G � Spp2m,Kq, then KrM2mpKqnsG is finitely generated by trace polynomials TrpW q, where

W is a reduced word of length at most 2m � 1 in ξ1, . . . , ξn and their symplectic transposes.5

A proof of Theorem 3.3.5 can be found in [Pro76]. For a more recent account, the reader can

consult [DCP17].

One could now ask what happens when MmpKq
n is replaced by a linear algebraic group

G � GLpm,Kq and what are the invariants of Gn. In other words, what would be a generating

family for CrHompFn, Gqs
G. The answer will of course depends on G. For instance, the function

det�1 : GLpm,Cq Ñ K� is non-trivial and invariant under GLpm,Kq. Its restriction to SLpm,Kq
however is the constant function 1. Using the Cayley-Hamilton Theorem, it is possible to express

the determinant of X P GLpm,Kq as polynomial in TrpXmq, . . . ,TrpXq, so the inverse of the de-

terminant can be expressed as a rational function of traces. It is explained in [Mar22, Sec. 2] how

trace functions and the invariant functions associated to the inverse of the determinant generate

the invariants of n matrices in GLmpKq.

Theorem 3.3.6. The algebra CrHompFn,GLpm,KqsGLpm,Kq is generated by the invariant functions

Trγ and det�1
γ for γ P Fn. In particular, CrHompFn,SLpm,KqsSLpm,Kq is generated by the trace

functions Trγ , for γ P Fn, only.

There exist analogues statements to Theorem 3.3.6 for Spp2m,Kq and SOp2m�1,Kq. The story
is slightly more subtle for SOp2m,Kq. We refer the reader to [Mar22, Sec. 2.3] for more details.

Obviously, trace functions on words are not algebraically independent. Luckily, Procesi also

described a collection of generators for the ideal of relations among the generators of Theorem 3.3.5

in [Pro76, Thm. 4.5] (see also [DCP17, Thm. 4.13]). The bottom-line is that the ideal of relations

is generated by trace identities.

Theorem 3.3.7 (Procesi’s Second Fundamental Theorem). The ideal of relations in KrMmpKqnsGLmpKq

for the generators TrpW q from Theorem 3.3.5 is generated by Trp1q �m and¸
σPSm�1

εpσqTrσpW0,W1, . . . ,Wmq,

where W0,W1, . . . ,Wm run over all possible reduced words in ξ1, . . . , ξn. Here, Sm�1 denotes the

symmetric group on m � 1 symbols, εpσq is the signature of σ, Tσ �
±

Tσl for the decomposition

of σ into the product of cycles σl (including trivial cycles), and finally, if σl is the cycle pi1 � � � ikq,

then TrσlpW0,W1, . . . ,Wmq � TrpWi1 � � �Wikq.

4The orthogonal transpose of a matrix is the inverse of its transpose. The orthogonal group Opm,Kq consists
precisely of the matrices that are equal to their orthogonal transposes.

5The symplectic transpose of a matrix A P M2mpKq is the matrix JAtJ , where J �

�
0 Im

�Im 0



and Im is the

m �m identity matrix. The symplectic group Spp2m,Kq consists precisely of the matrices that are equal to their
symplectic transposes.
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Before illustrating Theorem 3.3.7 with Example 3.3.10 below, we explain what happens to

the algebra of invariant functions of the presentation variety when Fn is replaced by a finitely

generated group Γ. So, let Γ denote a finitely generated group with generating family pγ1, . . . , γnq.

The embedding ı : HompΓ, Gq � Gn � HompFn, Gq induces a surjective morphism

ı� : CrGns↠ CrHompΓ, Gqs. (3.3.1)

The morphism ı� maps invariant functions to invariant functions and thus restricts to a morphism

pı�qG : CrGnsG Ñ CrHompΓ, GqsG. (3.3.2)

If we further assume G to be reductive, then pı�qG is surjective. This is a consequence of the

existence of Reynolds operators, see [Sik13, Rem. 25] or [Hos15, Cor. 4.23]. The morphism pı�qG

maps trace functions to trace functions in the following sense.

Lemma 3.3.8. Let W be a reduced word in the matrices variables ξ1, . . . , ξn. It holds that

pı�qGpTrpW qq � TrW pγ1,...,γnq .

Proof. The word W induces a word map W : Gn Ñ G. The trace function TrpW q : Gn Ñ C sends

pg1, . . . , gnq to TrpW pg1, . . . , gnqq. The image pı�qGpTrpW qq is the invariant function HompΓ, Gq Ñ

C given by ϕ ÞÑ TrpW pϕpγ1q, . . . , ϕpγnqqq. Because ϕ is a group homomorphism, it holds that

TrpW pϕpγ1q, . . . , ϕpγnqqq � TrpϕpW pγ1, . . . , γnqq, where we now think of W as a function W : Γn Ñ

Γ. We conclude that pı�qGpTrpW qq � TrW pγ1,...,γnq.

Lemma 3.3.9. Let G � GLpm,Cq be a reductive linear algebraic group such as SLpm,Cq. If the

algebra CrGnsG is generated by trace functions, then

CrHompΓ, GqsG � T pΓ, Gq.

Proof. If G is reductive, then pı�qG is surjective and so pı�qGpCrGnsGq � CrHompΓ, GqsG. More-

over, pı�qG maps trace functions to trace functions, thus, if CrGnsG is generated by trace functions,

then it holds pı�qGpCrGnsGq � T pΓ, Gq.

We have seen in Theorem 3.3.6 that CrGnsG is generated by trace functions for G � SLpm,Cq,
but not for G � GLpm,Cq since we need to account for the inverse of the determinant. In particular,

we conclude for Lemma 3.3.9 that

CrHompΓ,SLpm,CqqsSLpm,Cq � T pΓ,SLpm,Cqq.

Example 3.3.10. When G � GLp2,Cq, Theorems 3.3.5 and 3.3.7 say that the algebra of invariant

functions CrHompΓ,GLp2,CqqsGLp2,Cq is generated by Trγ and det�1
γ for γ P Γ and the ideal of

relations is generated by Tr1�2 and

Trα Trβ Trγ �Trα Trβγ �Trβ Trαγ �Trγ Trαβ �Trαβγ �Trαγβ , (3.3.3)
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for α, β, γ P Γ.

If we further restrict G to SLp2,Cq, then it is possible to simplify these relations to Tr1�2 and

to the famous trace relation

Trα Trβ �Trαβ �Trαβ�1 (3.3.4)

for α, β P Γ. In other words, there is an isomorphism of C-algebras

CrHompΓ,SLp2,CqqsSLp2,Cq � CrXγ : γ P Γs
N�

X1 � 2, Xγ1
Xγ2

�Xγ1γ2
�Xγ1γ

�1
2

	
.

To see that, it suffices to recover (3.3.3) from (3.3.4). Note that by taking α � 1 in (3.3.4),

we obtain the relation Trβ �Trβ�1 . From (3.3.4), we obtain Trαβγ � Trα Trβγ �Trαγ�1β�1 . We

further compute Trαγ�1β�1 � Trαγ�1 Trβ �Trβαγ�1 . Now, Trαγ�1 � Trα Trγ �Trαγ and Trβαγ�1 �

Trβα Trγ �Trβαγ . Combining these relations lead to (3.3.3) which proves the claim.

3.4 Characters

The reader may have already wondered where the name “character variety” comes from. The notion

of “characters” is some sort of dual to trace functions in the sense that a character is defined by

fixing a representation and letting γ P Γ be the variable. We will assume here that G � GLpm,Cq
is a linear algebraic group.

Definition 3.4.1 (Characters). The character of a representation ϕ P HompΓ, Gq is the function

χϕ : ΓÑ C

γ ÞÑ Trpϕpγqq.

In other words, χϕpγq � Trγpϕq. We denote by χpΓ, Gq � CΓ the set of all characters coming

from representations in HompΓ, Gq. We equip it with the subspace topology inherited from the

compact-open topology on CΓ.

Note that χpΓ, Gq � CΓ is automatically a Hausdorff space because CΓ is a Hausdorff space.

Theorem 3.4.2 ([CS83]). If G � SLp2,Cq, then χpΓ,SLp2,Cqq � CΓ is a closed algebraic variety.

We refer the reader to Culler-Shalen’s paper [CS83, Cor. 1.4.5] for a proof of Theorem 3.4.2.

The map

HompΓ, Gq Ñ χpΓ, Gq

is surjective by definition and factors through the quotient HompΓ, Gq{ InnpGq. We point out

however that a character does not necessarily determine a unique conjugacy class of representations.

For instance, the two representations of Example 3.2.1 are not conjugate but determine the same

character. Nevertheless, we have the following statement.

Proposition 3.4.3. Let G � GLpm,Cq be a linear algebraic group. Conjugacy classes of irreducible

representations are determined by their characters.
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Culler-Shalen provide a proof of Proposition 3.4.3 in [CS83, Prop. 1.5.2] for the caseG � SLp2,Cq
and claim that the result still holds when SLp2,Cq is replaced by GLpm,Cq. The analogous result

for almost Zariski dense representations can be found in [Lab13, Cor. 5.3.7].
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Chapter 4

Character varieties

Overview

First via Example 2.1.6 and then through Chapter 3, we highlighted the relevance of the quotient

space HompΓ, Gq{ InnpGq. If we equip it with the quotient topology, it serves as our fist prototype

of character variety. The goal of this chapter is to introduce several other notions of character

varieties, using more sophisticated quotients, in order to have some guarantees on the separability

of its topology or its geometric properties. A specification sheet, as well as a pair of examples of

character varieties, will be described in Section 4.1. The four definitions of character varieties that

we will introduce are

� Hausdorff character variety (Section 4.2),

� T1 character variety (Section 4.3),

� Algebraic (or GIT) character variety (Section 4.4),

� Analytic character variety (Section 4.5).

We conclude this chapter by some considerations on the tangent spaces to character varieties in

Section 4.6.

4.1 Foreshadowing a definition

When we simply equip the quotient HompΓ, Gq{ InnpGq with the quotient topology, we observed in

Chapter 3 that there is no reason to expect this quotient to have any reasonably nice topological

structure. This is explained by the conjugation action of G on the representation variety being

non-free and non-proper in general. We present a couple of examples of topological quotients below

in Section 4.1.1. It would therefore be ill-advised to simply define the character variety of the pair

pΓ, Gq to be the topological quotient HompΓ, Gq{ InnpGq. Before presenting our four alternative

quotients (Sections 4.2– 4.5), we describe a prescription sheet.

The first property that expect from a character variety are some reasonably good separability

properties. We will mainly focus on two notions of separability which we now recall.
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Definition 4.1.1 (Separability). A topological space X is said to be

� T1 if for any pair of distinct points in X, each point lies in an open set that does not contain

the other, or, equivalently, X is T1 if the points of X are closed.

� T2 or Hausdorff if for any pair of distinct points in X, there are two disjoint open sets such

that each contains one of the two points.

No matter what our definition of character variety is, it should also come with a projection

from HompΓ, Gq that factors through the quotient HompΓ, Gq{ InnpGq. In other words, we would

like to construct the largest possible finer quotient of HompΓ, Gq{ InnpGq whose topology enjoys

some regularity properties, or even has the structure of a variety or of a smooth manifold. We

will present several definitions of character varieties below, each of them guaranteeing increasingly

richer structures for the price of requiring more assumptions on Γ and G.

4.1.1 Guiding examples

We will start with a series of examples, trying to understand better what a character variety should

be and where things go wrong.

Abelian target group

When G is abelian, then the InnpGq action on HompΓ, Gq is trivial. In that case, the character

variety of the pair pΓ, Gq is simply its representation variety HompΓ, Gq. Observe that in that case

any representation ΓÑ G factorizes through the abelianization Γab :� Γ{rΓ,Γs of Γ and so

HompΓ, Gq � HompΓab, Gq.

In the particular case where G � R and Γ � π1X is the fundamental group of some connected

topological space X, we have the following interpretation of HompΓab, Gq. By the Hurewicz The-

orem, the abelianization of π1X is isomorphic to the first homology group H1pX,Rq of X. This

shows that the character variety Hompπ1X,Rq is naturally isomorphic to the vector space given by

the first cohomology of X:

Hompπ1X,Rq � HompH1pX,Rq,Rq � H1pX,Rq.

Free group on one generator

This example considers the case where Γ � Z is a the free group on one generator. In that case,

the topological quotient HompZ, Gq{ InnpGq is the space of conjugacy classes of G. Sometimes it is

simply denoted by

G{G :� HompZ, Gq{ InnpGq.

So, defining what the character variety of the pair pZ, Gq should be, amounts to defining a suitable

notion for the space of conjugacy classes of G.

We started to study the case G � PSLp2,Rq in Example 3.2.1. We already observed that

PSLp2,Rq{PSLp2,Rq is not a Hausdorff topological space. It is actually not even T1 since, in the
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notation of Example 3.2.1, the closure of the orbit of ϕ1 always contains the orbit of ϕ2. If we take

all the conjugacy classes of PSLp2,Rq into account, as illustrated on Figure A.1 from Appendix A,

we obtain the following cartoon picture of PSLp2,Rq{PSLp2,Rq. The elliptic conjugacy classes

Irotθ
hypλ

par�

par�

are parametrized by the parameter θ P p0, 2πq with rotθ approaching the identity as θ approaches

0 or 2π. The hyperbolic conjugacy classes are parametrized by the positive real number λ and

hypλ gets arbitrarily close to the identity as λ approaches 0. Finally, the two parabolic conjugacy

classes determined by par� and par� are the non-closed points of PSLp2,Rq{PSLp2,Rq. Their

closure contains the identity. The lack of separability is denoted by the dashed line. It is worth

observing that par� and par� corresponds to the only two representations ZÑ PSLp2,Rq that are
not reductive. In other words, HomredpZ,PSLp2,Rqq{ InnpPSLp2,Rqq is the Hausdorff, though not

smooth, space given by the circle and the blue half-line meeting at the identity.

4.2 Hausdorff quotient

The first approach consists in considering the Hausdorffization of the topological quotient. The

Hausdorffization of a topological space X is broadly speaking the largest Hausdorff quotient of X.

Let us give a more precise definition.

Definition 4.2.1 (Hausdorffization). Consider the equivalence relation on X given by x � y if and

only if x � y for all equivalence relations � on X such that X{� is Hausdorff (such a relation �

always exists, as one can identify all the points of X). The quotient

HauspXq :� X{�

is the Hausdorffization of X.

Lemma 4.2.2. The space HauspXq is a Hausdorff topological space. Moreover, the space HauspXq

has the following universal property: If Y is a Hausdorff topological space, then any continuous

map X Ñ Y factors uniquely through the projection X Ñ HauspXq.

Proof. First we prove that HauspXq is a Hausdorff space. Let x, y P X be two points with x � y.

By definition, there exists an equivalence relation � on X with Hausdorff quotient such that x � y.

Since the projections of x and y in X{� are separable and the map X{�Ñ X{� is continuous,

the projections of x and y are also separable in X{�.

Let now Y be a Hausdorff space and f : X Ñ Y be a continuous map. Define an equivalence

relation on X by x � y if and only if fpxq � fpyq. The quotient X{ � is homeomorphic to the
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Hausdorff space fpXq � Y . This implies the existence of a continuous surjective map HauspXq Ñ

fpXq such that f is the composition X Ñ HauspXq Ñ fpXq � Y . The factoring map is uniquely

determined by f .

Corollary 4.2.3. If x and y are two points of X such that {x}X {y} � H, then x � y.

Proof. Since HauspXq is Hausdorff, its points are closed. In particular, the conjugacy classes for

the relation � are closed subsets of X. If we assume that x � y, then the conjugacy classes of x and

y are disjoint closed subsets of X. This implies that the closures of txu and tyu are disjoint.

Definition 4.2.4 (Hausdorff character variety). The Hausdorff character variety of a finitely gener-

ated group Γ and a Lie groupG is the Hausdorffization of the topological quotient HompΓ, Gq{ InnpGq

and is denoted

RepT2pΓ, Gq :� Haus
�
HompΓ, Gq

M
InnpGq

	
.

The construction of character varieties by Hausdorff quotients has the advantage to work in

a broad sense: it makes sense for any finitely generated group Γ and any Lie group G (even for

any topological group G). The downside of the Hausdorff quotient is its lack of concreteness. It is

nevertheless a common choice in the literature, such as in [Mon16] for instance.

4.3 T1 quotient

An alternative to the Hausdorff quotient is the T1 quotient used in [RS90, §7]. Let us start with

some notation. For a topological group G acting on a space X, we denote the G-orbit of x P X by

Ox. We will assume that the action of G on X has the following crucial property:

@x P X, Ox � X contains a unique closed G-orbit. (4.3.1)

We write X {{G to denote the set of closed orbits for the action of G on X and define

π : X Ñ X {{G

to be the map that sends x to the unique closed orbit contained in Ox. A topology on X {{ G is

defined by declaring π to be a quotient map, i.e Z � X {{G is closed if and only if π�1pZq � X is

closed.

Alternatively, one could consider the relation on X defined by

x � y ô Ox XOy � H.

It turns out that this is precisely the relation behind X {{G.

Lemma 4.3.1. Under the assumption (4.3.1), the relation � is an equivalence relation and X {{G

is homeomorphic to the quotient X{�.

Proof. The relation � is obviously symmetric and reflexive. We prove that it is also transitive.

Assume that x � y and y � z. In particular, Ox XOy is nonempty and thus contains an element
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w. Since Ox XOy is closed and G-invariant, it holds Ow � Ox XOy. We conclude that Ox XOy

contains a unique closed orbit which is the one contained in Ow. Similarly, Oy X Oz contains a

unique closed orbit. By uniqueness of the closed orbit contained in Oy, the two must coincide.

Hence, Ox XOy XOz contains Ow and is therefore nonempty. This shows that x � z.

To see that X {{ G � X{ �, observe that, by the above argument, πpxq � πpyq if and only if

x � y. Both are quotients of X and therefore homeomorphic.

Lemma 4.3.2. The space X {{ G has the following universal property: for every T1 space Y , any

continuous map X Ñ Y that is constant on G-orbits factors uniquely through π : X Ñ X {{G.

Proof. Let Y be T1 with a continuous map f : X Ñ Y that is constant on G-orbits. Let x P X. We

want to prove that f is constant on Ox. Let y � fpxq. Since Y is T1, the singleton tyu � Y is closed

and so is f�1pyq. Therefore, Ox � f�1pyq and f is constant on Ox. This shows that f : X Ñ Y

factors through X {{G. The factoring map f : X {{GÑ Y is continuous and uniquely determined

by f .

In the case that X {{G is a T1 space, then Lemma 4.3.2 says that X {{G is the largest T1 quotient

of X. There is a relation between X {{G and the Hausdorffization of the topological quotient X{G

as shown in the following lemma.

Lemma 4.3.3. There is a natural surjective continuous map

X X{G

X {{G HauspX{Gq

π

D

Proof. Let x and y be two points of X. Lemma 4.3.1 says that if πpxq � πpyq, then Ox XOy � H.

This means the closures of Ox and Oy, seen as singletons in X{G, have a nonempty intersection.

By Corollary 4.2.3, we conclude that x and y project to the same point in HauspX{Gq.

Corollary 4.3.4. If X {{G is Hausdorff, then it is homeomorphic to the Hausdorffization of X{G.

Definition 4.3.5 (T1 character variety). If the conjugation action of G on the representation

variety HompΓ, Gq satisfies property (4.3.1), we define the T1 character variety of Γ and G to be

RepT1pΓ, Gq :� HompΓ, Gq {{ InnpGq.

Note that the T1 character variety of Γ and G might not be a T1 space, but always lies over any

T1 quotient of HompΓ, Gq by Lemma 4.3.2. In particular, by Lemma 4.3.3, there is a surjection

RepT1pΓ, Gq↠ RepT2pΓ, Gq

which is a homeomorphism when RepT1pΓ, Gq is Hausdorff.
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4.4 Algebraic quotient

When G is a complex reductive algebraic group, such as SLpn,Cq for instance, then it is possible

to define a notion of character variety using the complex algebraic nature of the representation

variety. The definition is based on geometric invariant theory—in short, GIT. The idea is to define

a variety from what should be its algebra of regular functions. The reader may consult Sikora’s

notes [Sik12], or [Dre04, §2] and [Lou15, §B.5] for further details.

Recall that if G is a complex algebraic group then the representation variety HompΓ, Gq is an

algebraic variety by Lemma 2.1.3. It is common in algebraic geometry to study a variety through its

algebra of regular functions. In Section 3.3, we studied the algebra of regular functions of HompΓ, Gq

which was denoted by CrHompΓ, Gqs and its subalgebra of G-invariant functions CrHompΓ, GqsG.

We reminded the reader about Nagata’s Theorem which implies that CrHompΓ, GqsG is finitely

generated when G is reductive, see Remark 3.3.2. In that case, there is an algebraic variety denoted

SpecpCrHompΓ, GqsGq, called the spectrum of CrHompΓ, GqsG, whose algebra of regular functions is

CrHompΓ, GqsG. More concretely, one may think of the spectrum of CrHompΓ, GqsG as the algebraic

variety given by the set of points inside Cn that belong to the image of HompΓ, Gq under a family

of generators pf1, . . . , fnq of CrHompΓ, GqsG. Recall from Section 3.3 that when G is the linear

algebraic group SLpn,Cq, then a system of generators is provided by trace functions.

Definition 4.4.1 (GIT character variety). The GIT character variety of a finitely generated group

Γ and a complex reductive algebraic group G is defined to be

RepGITpΓ, Gq :� SpecpCrHompΓ, GqsGq.

The GIT character variety is sometimes denoted by HompΓ, Gq{{G using the double quotient-bar

notation.

In other words, the GIT character variety is the algebraic variety whose algebra of regular

functions are the invariant functions of HompΓ, Gq. The GIT character variety has by definition the

structure of a complex algebraic variety. As such, it is a Hausdorff space for the Euclidean topology.

The inclusion CrHompΓ, GqsG � CrHompΓ, Gqs induces a surjective morphism of algebraic varieties

p : HompΓ, Gq↠ SpecpCrHompΓ, GqsGq.

We recall here some general properties of GIT quotients. The reader may consult [Dre04, §2]

and [Lou15, §B.5], and references therein, for proofs.

Lemma 4.4.2. The GIT quotient SpecpCrHompΓ, GqsGq has the following universal property: for

every algebraic variety Y , any morphism HompΓ, Gq Ñ Y that is constant on G-orbits factors

uniquely through p : HompΓ, Gq Ñ SpecpCrHompΓ, GqsGq.

Lemma 4.4.3. The projection p : HompΓ, Gq ↠ SpecpCrHompΓ, GqsGq has the following proper-

ties.

1. For any two representations ϕ1, ϕ2 P HompΓ, Gq, it holds that

ppϕ1q � ppϕ2q ðñ Oϕ1
XOϕ2

� H.
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2. Any fibre of p contains a unique closed orbit (compare (4.3.1)).

When we combine Lemma 4.4.3 and Lemma 4.3.1 we obtain that the underlying topological

structure of the GIT character variety of Γ and G coincides with the T1 character variety. Since

the GIT character variety is a Hausdorff space, it further coincides with the Hausdorff character

variety by Corollary 4.3.4

RepGITpΓ, Gq � RepT1pΓ, Gq � RepT2pΓ, Gq.

4.4.1 (Poly)stable representations

The GIT character variety can be described more concretely as follows.

Definition 4.4.4 (Stability of representations). Let G be an algebraic group. A representation

ϕ : ΓÑ G is

� polystable if Oϕ is closed.

� stable if ϕ is polystable and regular.

The InnpGq-invariant subspace of polystable representations is denoted HompspΓ, Gq and the sub-

space of stable representations is denoted HomspΓ, Gq.

These notions are redundant if G is a reductive complex algebraic group because of the following.

Proposition 4.4.5. Let G be a reductive complex algebraic group. Let ϕ P HompΓ, Gq be a repre-

sentation. Then

1. ϕ is reductive if and only if ϕ is polystable,

2. ϕ is irreducible if and only if ϕ is stable.

The first assertion of Proposition 4.4.5 was already stated in Proposition 3.2.20. The second

assertion is a consequence of Lemma 3.2.19.

Theorem 4.4.6. Let G be a reductive complex algebraic group. The topological quotient

HompspΓ, Gq{ InnpGq � HomredpΓ, Gq{ InnpGq

is homeomorphic to RepGITpΓ, Gq. It contains the Zariski open subset given by the topological

quotient

HomspΓ, Gq{ InnpGq � HomirrpΓ, Gq{ InnpGq.

Proof. Polystable representations have a closed orbit under the InnpGq-action by definition. So, the

first statement of Lemma 4.4.3 implies that the projection p : HompΓ, Gq Ñ SpecpCrHompΓ, GqsGq

factors through an injective map

HompspΓ, Gq{ InnpGq Ñ RepGITpΓ, Gq.

We can use the second statement of Lemma 4.4.3 to see that this map is also surjective. Recall

now from Proposition 3.2.10 that HomirrpΓ, Gq � HomspΓ, Gq is Zariski open in HompΓ, Gq.
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4.4.2 Semi-algebraic quotient

Theorem 4.4.6 says that there is a natural structure of algebraic variety on the quotient of the space

of reductive representations by the InnpGq-action, given that G is a reductive complex algebraic

group. The GIT theory is sadly not available when G is a real algebraic group. It is not clear in

that case what would be a good definition of “algebraic character variety”. Attempting of defining

it as the real points of the GIT character variety of representations into the complexification GC of

G runs into the following issues:

� Real points of the GIT character variety of representations into GC correspond to represen-

tations into one of the real forms of G. For instance, when GC � SLp2,Cq, then real points

of an SLp2,Cq-character variety correspond to representations into SLp2,Rq or into SUp2q.

� Two non-conjugate elements of G might be conjugate inside GC, so non-conjugate representa-

tions into G might be identified when one looks at the real points of the GC-character variety.

For instance, the rotation matrices rotθ and rot4π�θ are not conjugate in SLp2,Rq, but they
are in SLp2,Cq because they have the same trace.

It turns out that by restricting to reductive representations before taking the topological quo-

tient, the result space has a natural structure of semi-algebraic1 variety by the work of Richardson-

Slowdowy.

Theorem 4.4.7 ([RS90]). Let G be a real algebraic group. The topological quotient

HomredpΓ, Gq{ InnpGq

has a natural structure of real semialgebraic variety.

Theorem 4.4.7 is proved in [RS90, Thm. 7.6].

4.5 Analytic quotient

If one is interested in defining a character variety that has the structure of a smooth analytic

manifold, one can restrict to good representations which we introduced in Definition 3.2.12. This

will work well for closed surface groups for instance since we saw in Corollary 3.2.14 that when

Γ � πg,0, then HomgoodpΓ, Gq is a nonempty analytic manifold. In that case, we explained that the

topological quotient HomgoodpΓ, Gq{ InnpGq is a smooth analytic manifold.

Definition 4.5.1 (Analytic character variety). The analytic character variety of a closed surface

group Γ � πg,0 and a reductive algebraic group G is defined to be

Rep8pπg,0, Gq :� Homgoodpπg,0, Gq{ InnpGq.

The topology of the analytic character variety is Hausdorff. The inclusion Homgoodpπg,0, Gq �

Hompπg,0, Gq induces an inclusion Rep8pπg,0, Gq � Hompπg,0, Gq{ InnpGq. Since Rep8pπg,0, Gq is

1A semialgebraic variety is defined to be a set of points satisfying polynomial equalities and inequalities.
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Hausdorff, we obtain an inclusion

Rep8pπg,0, Gq ãÑ RepT2pπg,0, Gq.

4.6 Tangent spaces

In Section 2.3, we described what the Zariski tangent spaces to the representation variety HompΓ, Gq

and to the orbit of a representation Oϕ are. We explained that they can be identified with the vector

spaces of 1-cocycles Z1pΓ, gϕq, respectively of 1-coboundaries B1pΓ, gϕq. It would be tempting to

affirm that the tangent space to HompΓ, Gq{ InnpGq at the conjugacy class rϕs is simply equal to

the quotient Z1pΓ, gϕq{B
1pΓ, gϕq which identifies with the first cohomology group H1pΓ, gϕq. This

is however not the case in general.

The quotient HompΓ, Gq{ InnpGq can be given the structure of a ringed space in the sense of

Definition 2.3.1 as follows. If R denotes the sheaf of admissible functions on HompΓ, Gq that we

described after Lemma 2.3.2, then a sheaf of admissible functions on HompΓ, Gq{ InnpGq can be

taken as the sub-sheaf of R consisting of InnpGq-invariant functions. We denote in by RG. The

quotient map HompΓ, Gq Ñ HompΓ, Gq{ InnpGq is a morphism of ringed spaces that induces a map

of their Zariski tangent spaces Tϕ HompΓ, Gq Ñ TrϕsHompΓ, Gq{ InnpGq. This maps factors through

the quotient Tϕ HompΓ, Gq{TϕOϕ inducing the linear map

H1pΓ, gϕq Ñ TrϕsHompΓ, Gq{ InnpGq. (4.6.1)

There is no reason in general for this map to be an isomorphism, as explained in [Kar92, Rem. 1.4].

When Γ is a surface group, it is possible to say more.

Proposition 4.6.1 ([Gol84]). If Γ � πg,0 is a closed surface group and G is a reductive algebraic

group, then the map (4.6.1) is an isomorphism on the quotient of good representations

TrϕsRep
8pπg,0, Gq � H1pπg,0, gϕq.

Proof. This is an immediate consequence of Corollary 3.2.14 when n � 0.

The analogue statement to Proposition 4.6.1 for general surface group πg,n in the case G �

SLpm,Cq can be found in [Law09, Prop. 8], see also [Law09, Sec. 2.3].
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Chapter 5

Symplectic structure of character

varieties

Overview

Our goal in this chapter is to give a detailed description of Goldman’s natural symplectic structure

on character varieties of representations of closed surface groups into quadrable groups. We will

present the abstract definition in Section 5.1 and consider the case of closed surface groups in

Section 5.2. In Section 5.3, we introduce the notion of relative character variety and explain how

they also carry a natural symplectic structure.

5.1 Abstract definition

Throughout this chapter we assume that G is a quadrable Lie group and we fix a non-degenerate,

symmetric, Ad-invariant bilinear form B : g � g Ñ R. Assume for now that Γ is any finitely

generated group. We explained in Corollary 2.3.5 that the Zariski tangent space to HompΓ, Gq at

a representation ϕ can be identified with the set of closed 1-cochains Z1pΓ, gϕq � gΓ. To define

a 2-form on the representation variety HompΓ, Gq we use the cup product in group cohomology

(1.3.11). Combined with the pairing B, this gives a map

ω : Z1pΓ, gϕq � Z1pΓ, gϕq
!

ÝÑ Z2pΓ, gϕ b gϕq
B�

ÝÑ Z2pΓ,Rq. (5.1.1)

The map ω is bilinear and anti-symmetric because the cup product is anti-symmetric in degree 1

(Lemma 1.3.12) and B is symmetric. Building up on the work of Goldman in [Gol84], Karshon

proved the following statement.

Theorem 5.1.1 ([Gol84, Kar92]). Let φ : Z2pΓ,Rq Ñ R be any continuous linear function that

vanishes on B2pΓ,Rq. Then, φ � ω is a closed 2-form on HompΓ, Gq.

The main conclusion of Theorem 5.1.1 is the statement that the form φ � ω is closed. Karshon

gives an elementary proof of the closeness via direct computations in group cohomology.
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The cup product of coboundaries in B1pΓ, gϕq is itself a coboundary inside B2pΓ, gϕ b gϕq,

showing that the 2-form φ � ω is degenerate in general. Recall from Proposition 2.3.6 that the

tangent space at ϕ to the G-orbit Oϕ � HompΓ, Gq can be identified with the 1-coboundaries

B1pΓ, gϕq � gΓ. So, φ �ω is degenerate at least along the tangent directions to the G-orbit of ϕ. In

general, the kernel of φ � ω might contain more degenerate directions than those which arise from

Oϕ.

Definition 5.1.2 (Goldman symplectic form). In the case that the G-orbits are the only directions

of degeneracy of φ � ω, we denote by pωGqϕ the induced non-degenerate pairings on cohomology:

pωGqϕ : H
1pΓ, gϕq �H1pΓ, gϕq Ñ R.

In a slight abuse of language, we say that ωG is the the Goldman symplectic form on the quotient

HompΓ, Gq{ InnpGq.

The label G in index of ω refers to Goldman. We are abusing the terminology “symplectic form”

here since the topological quotient HompΓ, Gq{ InnpGq does not need to be a variety in general. It

is also equally abusive to say that the “Zariski tangent space” at rϕs P HompΓ, Gq{ InnpGq is the

quotient space H1pΓ, gϕq � Z1pΓ, gϕq{B
1pΓ, gϕq. What we should say instead, if one wishes to be

fromal, is that ωG is a 2-form on HompΓ, Gq that is degenerate precisely along the orbits of the

InnpGq-action.

5.2 Closed surface groups

We start by considering the case where Γ � πg,0 is a closed surface group. Let rπg,0s be a funda-

mental class for πg,0 which we defined in Definition 1.3.17 as a generator of H2pπg,0,Zq � Z (where

Z is the trivial πg,0-module). We can also think of rπg,0s as a choice of orientation for the surface

Σg,0 under the isomorphism H2pπg,0,Zq � H2pΣg,0,Zq of Theorem 1.3.8. Integration against rπg,0s

gives an isomorphism

rπg,0s" : H2pπg,0,Rq Ñ R.

Let φ : Z2pπg,0,Rq Ñ R be given by the composition of the quotient map Z2pπg,0,Rq Ñ H2pπg,0,Rq
and the integration against rπg,0s. Clearly, φ vanishes on B2pπg,0,Rq.

Lemma 5.2.1. Let Γ � πg,0 be a closed surface group. The composition of φ : Z2pπg,0,Rq Ñ R
with the form ω of (5.1.1) defines a 2-form on Hompπg,0, Gq whose kernel is B1pπg,0,Rq.

Proof. The proof relies on Poincaré duality in group cohomology for the group πg,0. It implies that

the cup product

H1pπg,0,Rq �H1pπg,0,Rq
!

ÝÑ H2pπg,0,Rq

is a non-degenerate pairing. This means that the form φ � ω is degenerate on B1pπg,0,Rq only.

Remark 5.2.2. An alternative argument to prove that the form is non-degenerate which does not

use Poincaré duality can be found in [GR98]. Guruprasad-Rajan’s argument uses an inner product

on H1pπg,0,Rq to define a Hodge �-operator B1pπg,0, gϕq
K Ñ Z1pπg,0, gϕq. If �v denotes the image

of the cocycle v under this operation, then they prove that ωGpv, �vq � 0.
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The induced non-degenerate closed form pωGqϕ : H
1pπg,0, gϕq�H1pπg,0, gϕq Ñ R is the classical

Goldman symplectic form for character varieties of closed surface groups representations. The

original argument of Goldman in [Gol84] to prove that the ωG is closed is inspired by the work

of Atiyah-Bott from [AB83] who considered the case where G is compact. The proof involves

an infinite dimensional symplectic reduction from the affine space of connections on some vector

bundle, see [Gol84] and [Lab13, §6] for more details.

It is possible to obtain an explicit formula for the Goldman symplectic form in the vocabulary of

group cohomology. This formula was already obtained and used by Goldman in [Gol84, Eq. (3.4)]

to prove that the eponymous form corresponds to the Weyl-Petersson symplectic form on Teichüller

space. To write down the formula, we will use the explicit fundamental class that we computed in

Section 1.4.2, as well as the formulae for the cup product in group cohomology given in (1.3.11)

and for the cap product (1.3.14).

Proposition 5.2.3 ([Gol84]). The Goldman symplectic form pωGqϕ : H
1pπg,0, gϕq�H1pπg,0, gϕq Ñ

R has the following explicit form on a pair of 1-cocycles u, v P Z1pπg,0, gϕq

pωGqϕpu, vq � �
ģ

i�1

B
�
upR�1

i � b�1
i R�1

i�1q � vpaiq
�
�B

�
upa�1

i R�1
i �R�1

i�1q � vpbiq
�
,

where Ri :�
±

j iraj , bjs.

Proof. By definition, pωGqϕpu, vq � B�pu ! vq " rπg,0s, where rπg,0s is the fundamental class

computed in Section 1.4.2. We use the cup and cap products formulae (1.3.11) and (1.3.14) to

compute the following. First, observe that

B�pu! vq" pRi, aiq � BpupRiq �AdϕpRiqvpaiqq

� �BpupR�1
i q � vpaiqq

where we used the Ad-invariance of B and the relation upx�1q � �Adϕpx�1qvpxq. Similarly,

B�pu! vq" pRiaibi, a
�1
i q � BpupRiaibiq �AdϕpRiaibiqvpa

�1
i qq

� �BpupRiaibiq �AdϕpRiaibia
�1
i qvpaiqq.

Since upRiaibiq � upRiaibia
�1
i q �AdϕpRiaibia

�1
i qupaiq and Riaibia

�1
i � Ri�1bi, we conclude that

B�pu! vq" pRiaibi, a
�1
i q � Bpupb�1

i R�1
i�1q � vpaiqq �Bpupaiq � vpaiqq.

Observe also that

B�pu! vq" pai, a
�1
i q � �Bpupaiq � vpaiqq

and

B�pu! vq" p1, 1q � 0.

The analogue formulas are available when we replace ai by bi. After summing over all i � 1, . . . , g,

we obtain the desired formula.

Remark 5.2.4. The Goldman symplectic form depends on the pairing B that we chose for the Lie
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algebra of G. Different choices of pairing for the same Lie group G may lead to different symplectic

structures. Abusing once again of the term “symplectic manifold”, one can say that Goldman’s

construction is a functor form the product category of the category of closed connected oriented

surfaces Σg,0 with the category of quadrable Lie groups G with a choice of a form pairing B to the

category of “symplectic manifold”

�
Σg,0, pG,Bq

�
ù

�
Hompπ1pΣg,0q, Gq{ InnpGq, ωG

�
.

We point out that the quotients Hompπ1pΣg,0q, Gq{ InnpGq obtained for different choices of base-

points in Σg,0 are naturally isomorphic (the isomorphism does not depend on the choice of path

connecting different basepoints).

Example 5.2.5. In the case where G � R, we saw in Section 4.1.1 that the character variety of the

pair pπg,0,Rq can be naturally identified with the vector space H1pΣg,0,Rq. This vector space is of

dimension 2g and carries a symplectic form given by the so-called intersection pairing. This form

corresponds to the standard symplectic form on R2g � H1pΣg,0,Rq and also to the wedge product

of differential form when one thinks in terms of de Rham cohomology. It follows from the definition

that, when the paring B is taken to be the product of real numbers, then the Goldman symplectic

form on the character variety of the pair pπg,0,Rq corresponds to any of the above symplectic forms

on H1pΣg,0,Rq.

5.3 General surface groups

We now consider the case where Γ � πg,n is a surface group with n ¥ 1. We already observed

earlier that πg,n is a free group as soon as n ¥ 1 and the representation variety Hompπg,n, Gq is

isomorphic to the product G2g�n�1. This product is too uninteresting to be studied as such for

its geometric properties. Instead, we prescribe some constraints for the image of the boundary

generators in order to obtain a richer space of representations. This leads to the notion of relative

character varieties.

5.3.1 Relative character varieties

Instead of looking at the whole space Hompπg,n, Gq at once, we would rather decompose it as the

disjoint union of so-called relative representation varieties.

Definition 5.3.1 (Relative representation variety). Let C � pC1, . . . , Cnq be an ordered collection

of conjugacy classes in G. The relative representation variety associated to
�
πg,n, pG, Cq

�
is the

subspace of Hompπg,n, Gq given by

HomCpπg,n, Gq :� tϕ P Hompπg,n, Gq : ϕpciq P Ci, @i � 1, . . . , nu ,

where c1, . . . , cn refer to the generators of πg,n in the presentation (1.4.1).
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If G{G denotes the set of conjugacy classes in G, then

Hompπg,n, Gq �
§

CPpG{Gqn
HomCpπg,n, Gq.

When we realize πg,n as the fundamental group of the surface Σg,n, then it is possible to define

a relative character variety as the collection of all representations π1Σg,n Ñ G that sends clock-

wise oriented loops around the punctures of Σg,n to prescribed conjugacy classes inside G. The

conjugation action of G on Hompπg,n, Gq restricts to HomCpπg,n, Gq.

Lemma 5.3.2. Let G be a Lie group equipped with an analytic atlas. The relative representation

variety HomCpπg,n, Gq is naturally an analytic subvariety of G2g�n. If G is a complex algebraic

group, then HomCpπg,n, Gq is an algebraic subvariety of Hompπg,n, Gq. If G is a real algebraic

group, then HomCpπg,n, Gq is a semialgebraic subvariety of Hompπg,n, Gq.

Proof. The proof is analogous to the proof of Lemma 2.1.2. A conjugacy class C P G{G is a smooth

submanifold of G isomorphic to G{Zpcq, where c is any element of C (recall that Zpcq is a closed

subgroup of G). It has a unique structure of real analytic manifold that makes the projection

map G Ñ G{Zpcq an analytic submersion. The relative representation variety HomCpπg,n, Gq is

naturally identified with the subspace of G2g � C1 � . . .� Cn cut out by the single relation of the

surface group πg,n (see (1.4.1)). This shows that HomCpπg,n, Gq is an analytic subvariety of G2g�n.

Observe now that, if G is a complex algebraic group, then conjugacy classes in G are algebraic

subvarieties of G. This can be seen as a consequence of Chevalley’s Theorem. Moreover, if G is

a real algebraic group, then conjugacy classes in G are semialgebraic subvarieties of G.1 This, in

turn, is a consequence of Tarski-Seidenberg Theorem.

Definition 5.3.3 (Relative character varieties). The Hausdorffization of the topological quotient

HomCpπg,n, Gq{ InnpGq

is called the relative character variety associated to
�
πg,n, pG, Cq

�
.

Depending on the properties of the group G and the usage of relative character varieties, Defi-

nition 5.3.3 can be refined by taking more sophisticated quotients in order to get a better control

of its structure similarly as in Section 4.

Tangent spaces

As we did in Section 2.3, we would like to determine the Zariski tangent space to relative character

varieties. We follow the general approach of [GHJW97, §4], that can also be found in [Law09] in

the case G � SLpm,Cq. If evci : Hompπg,n, Gq Ñ G denotes the evaluation on the fundamental

group element ci, then we can write

HomCpπg,n, Gq � Hompπg,n, Gq X ev�1
c1 pC1q X � � � X ev�1

cn pCnq.

1An example of conjugacy classes that are a semialgebraic subvarieties, but not algebraic subvarieties, are parabolic
conjugacy classes inside SLp2,Rq.
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The evaluation on any fundamental group element is a locally smooth function on Hompπg,n, Gq.

This means, we can express the Zariski tangent space to HomCpπg,n, Gq at ϕ as the space of vectors

v in Tϕ Hompπg,n, Gq for which pd evciqϕpvq P TϕpciqCi.

Lemma 5.3.4. The conjugacy class Ci is a smooth submanifold of G isomorphic to G{Zpϕpciqq.

Its tangent space at ϕpciq can be identified with the quotient g{zpϕpciq, where zpϕpciqq denotes the

Lie algebra of Zpϕpciqq. In other words,

TϕpciqCi � tξ �Adpϕpciqqξ : ξ P gu.

Proof. If gt is a 1-parameter family of group elements inside Zpϕpciqq with derivative ξ at t � 0,

then by differentiating the relation gtϕpciqg
�1
t � ϕpciq at t � 0, we obtain ξϕpciq � ϕpciqξ � 0.

In order to see as an element of g, we multiply on the right by ϕpciq
�1 and obtain the desired

expression.

Corollary 5.3.5. The Zariski tangent space to HomCpΓ, Gq at ϕ can be identified with the vector

space of parabolic 1-cocycles that we introduced in Section 1.3.9

Tϕ HomCpΓ, Gq �
 
v P Z1pπg,n, gϕq : @i � 1, . . . , n, Dξi P g, vpciq � ξi �Adpϕpciqqξi

(
� Z1

parpπg,n, gϕq.

Proof. Recall that we identified Tϕ Hompπg,n, Gq with the vector space of 1-cocycles Z1pπg,n, gϕq in

Corollary 2.3.5. A tangent vector v P Z1pπg,n, gϕq thus belongs to Tϕ HomCpπg,n, Gq if pd evciqϕpvq P

Ci for every i � 1, . . . , n. We use Lemma 5.3.4 to express this condition in terms of g. This gives

the relations Dξi P g, vpciq � ξi�Adpϕpciqqξi which precisely mean that v is exact on the boundary,

proving the identification with parabolic 1-cocycles.

The tangent space to the G-orbit Oϕ of ϕ P HomCpΓ, Gq still identifies with B1pπg,n, gϕq. Recall

that the quotient of parabolic 1-cocycles by 1-coboundaries is the first parabolic group cohomology

group of πg,n with coefficients in the πg,n-module gϕ:

H1
parpπg,n, gϕq � Z1

parpπg,n, gϕq{B
1pπg,n, gϕq.

The observations of Section 4.6 on the difference between the tangent space to the quotient and

the quotient of tangent spaces still hold. Analogues of Proposition 4.6.1 are available in literature,

see for instance [Law09, Prop. 10].

Dimension and smooth points

We can use the previous description of the tangent space to compute the dimension of HomCpΓ, Gq

at a representation ϕ. Recall that we computed in (2.3.2) the dimension of the 1-coboundaries to

be

dimB1pπg,n, gϕq � dimG� dimZpϕq.

65



Proposition 5.3.6. Let G be a quadrable Lie group. The dimension of the Zariski tangent space

to Hompπg,n, Gq at ϕ is

dimZ1pπg,n, gϕq � p2g � n� 1q dimG� dimZpϕq

and the dimension of the Zariski tangent space to HomCpπg,n, Gq at ϕ is

dimZ1
parpπg,n, gϕq � p2g � 1q dimG� dimZpϕq �

ņ

i�1

dimCi.

In particular, the representations ϕ in Hompπg,n, Gq, respectively in HomCpπg,n, Gq, with

dimZpGq � dimZpϕq

minimize the dimension of their Zariski tangent spaces. Moreover, the points with dimZpϕq � 0

(which can only occur if dimZpGq � 0) are smooth points of Hompπg,n, Gq and HomCpπg,n, Gq.

Proof. We proceed as in the proof of Proposition 2.4.4. Let Ai :� ϕpaiq, Bi :� ϕpbiq andDi :� ϕpciq,

where ai, bi, ci refer to the generators int the presentation (1.4.1). We consider the relation map

F : G2g�n Ñ G defined by

F pX1, . . . , Xg, Y1, . . . , Yg, Z1, . . . , Znq :�
g¹

i�1

rXi, Yis
n¹

i�1

Zi.

When we differentiate it at pA1, . . . , Ag, B1, . . . , Bg, D1, . . . , Dnq and identify all the tangent spaces

with g, we obtain a map µ : g2g�n Ñ g that can be written as

µpα1, . . . , αg, β1, . . . , βg, γ1, . . . , γnq �
ģ

i�1

�¹
j i

Ad
�
rAj , Bjs

��
pαi �AdpAiBiA

�1
i qαiq

�
ģ

i�1

�¹
j¤i

Ad
�
rAj , Bjs

��
pβi �AdpBiAiB

�1
i qβiq

�
g¹

i�1

Ad
�
rAi, Bis

� ņ

i�1

�
i�1¹
j�1

Ad
�
Dj

��
pγi �AdpDiqγiq.

Let V be the orthogonal complement of the image of µ with respect to the pairing B. Similarly

as in the alternative proof of Proposition 2.4.3, we can prove that that V � zpϕq. In particular, µ is

surjective as soon as zpϕq � t0u, or equivalently dimZpϕq � 0, proving that the relation map F is a

submersion at every ϕ with zpϕq � t0u. Moreover, the Rank-Nullity Theorem gives the dimension

count:

dimTϕ Hompπg,n, Gq � dimKerpµq

� p2g � nq dimG� dim Impµq

� p2g � n� 1q dimG� dim ImpµqK

� p2g � n� 1q dimG� dimZpϕq.
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In order to compute the dimension of dimTϕ HomCpπg,n, Gq we proceed as above, but we first

restrict the relation map to G2g � C1 � � � � � Cn Ñ G (compare with [Law09, Cor. 7]). This has

the effect of replacing the term ndimG by the sum of the dimension of the conjugacy classes Ci is

the final formula.

5.3.2 Symplectic form

We would like to describe an analogue of the Goldman symplectic form from Section 5.2 for general

surface groups. We denote by Biπg,n the subgroup of πg,n generated by ci. We write Bπg,n for

the collection of subgroups tBiπg,nu. As we explained in Section 1.3.9, the cup product in group

cohomology restricts to the product (1.3.15) in parabolic group cohomology given by the anti-

symmetric bilinear form

ω : Z1
parpπg,n, gϕq � Z1

parpπg,n, gϕq
!

ÝÑ Z2pπg,n, Bπg,n, gϕ b gϕq
B�

ÝÑ Z2pπg,n, Bπg,n,Rq.

Let rπg,n, Bπg,ns be a generator of H2pπg,n, Bπg,n,Zq � Z such as the one computed in Section 1.4.2.

It corresponds to a choice of orientation on the surface Σg,n. Integrating against the fundamental

class rπg,n, Bπg,ns gives an isomorphism H2pπg,n, Bπg,n,Rq
�
ÝÑ R. Let φ : Z2pπg,n, Bπg,n,Rq Ñ R be

the composition of the quotient map Z2pπg,n, Bπg,n,Rq Ñ H2pπg,n, Bπg,n,Rq with the integration

against rπg,n, Bπg,ns. Like in the case of closed surfaces, the 2-form φ �ω is degenerate precisely on

B1pπg,n, gϕq. This can be seen as a consequence of Poincaré duality as in the proof of Lemma 5.2.1.

Lemma 5.3.7. The composition of

ω : Z1
parpπg,n, gϕq � Z1

parpπg,n, gϕq Ñ Z2pπg,n, Bπg,n,Rq

with φ : Z2pπg,n, Bπg,n,Rq Ñ R descends to a non-degenerate anti-symmetric bilinear form

pωGqϕ : H
1
parpπg,n, gϕq �H1

parpπg,n, gϕq Ñ R

The closedness of the form was established by Biswas-Guruprasad in [BG93] using methods from

gauge theory. A different argument in terms of group cohomology was provided by Guruprasad-

Huebschmann-Jeffrey-Weinstein in [GHJW97, Thm. 7.1]. The last group of authors require the

hypothesis that the conjugacy class Ci lie in the image of the Lie exponential map exp: gÑ G, see

also Remark 5.3.10.

Theorem 5.3.8 ([BG93, GHJW97]). The bilinear form

φ � ω : Z1
parpπg,n, gϕq � Z1

parpπg,n, gϕq Ñ R

defines a closed 2-form on HomCpπg,n, Gq.

Remark 5.3.9 (Poisson structure). The representation variety Hompπg,n, Gq is the disjoint union of

all the relative representation varieties HomCpπg,n, Gq over all possible choices for C P pG{Gqn. The
quotient of each relative representation variety by the InnpGq-action has a symplectic structure in

the sense of Theorem 5.3.8. It turns out that these quotients are the symplectic leaves of a Poisson
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structure on the quotient of the representation variety by the InnpGq-action. The reader is referred

to [BJ21, Law09] for a precise statement, a proof, and references to prior proofs.

Sometimes the notion of stratified symplectic spaces is preferred to that of Poisson manifold as

it is more flexible. The reader can consult [GHJW97, Sec. 9] where it showed that, when G is a

compact Lie group, then relative character varieties are stratified symplectic spaces with a unique

open and dense top stratum that consists of irreducible representations.

Remark 5.3.10 (Dimensionality of conjugacy classes). We make a little digression on the dimension

of conjugacy orbits inside Lie groups. At every point in the smooth locus of the relative character

variety HomCpπg,n, Gq{ InnpGq the tangent space is isomorphic to H1
parpπg,n, gϕq. In Lemma 5.3.7,

we explained that H1
parpπg,n, gϕq is equipped with an anti-symmetric non-degenerate pairing. This

implies that the smooth locus of HomCpπg,n, Gq{ InnpGq has even dimension. When we compare

this statement with Proposition 5.3.6, we conclude that the quantity

ņ

i�1

dimCi

must be an even number. This is quite a remarkable observation, because in general nothing

prevents a conjugacy class inside a Lie group G to have odd dimension. For instance, in the

orthogonal group Op2q, all the matrices with determinant �1 are conjugate and their conjugacy

class is isomorphic to a circle. Max Riestenberg pointed out to the author a more general class of

examples of Lie groups that contain conjugacy classes of odd dimension. They are the group of all

isometries, orientation-preserving or not, of an odd-dimensional symmetric space X. In that case,

the conjugacy class of the orientation-reversing isometry sp that reflects through a point p is the

set of all the orientation-reversing isometries sq for q P X and is therefore isomorphic to X.

Nevertheless, conjugacy classes tend to have even dimension due to their relation to coadjoint

orbits. Recall that a conjugacy class C P G{G of some element g P G is a smooth submanifold of

G that is diffeomorphic to the quotient G{Zpgq. If G is quadrable, the pairing B on g can be used

to identify coadjoint orbits in g� to adjoint orbits in g. Coadjoint orbits are naturally symplectic,

see e.g. [CdS01, Homework 17]. The Lie exponential map sends the adjoint orbit of ξ P g to the

conjugacy orbit of exppξq in G. Recall however that the Lie exponential map is not necessarily a

local diffeomorphism at every ξ, but it is at 0 P g. In particular, all conjugacy classes that are the

image of an adjoint orbit that is sufficiently close to 0 P g by the Lie exponential map have even

dimension. This raises the following question.

Question 5.3.11. When does a conjugacy orbit in a quadrable Lie group G have even dimension?

Is it necessarily the case if it lies in the image of the Lie exponential map?

Explicit formulae

We already provided an explicit formula for Goldman’s symplectic form for character varieties of

closed surface groups in Proposition 5.2.3. We now wish to do the same for the surface groups

with punctures. The formula was first obtained by Guruprasad-Huebschmann-Jeffrey-Weinstein

in [GHJW97, Sec. 8].

If we start with two parabolic cocycles u, v P Z1
parpπg,n, gϕq, then by definition of parabolic
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cocycles, there exist ξi, ζi P g such that

upciq � ξi �Adpϕpciqqξi, vpciq � ζi �Adpϕpciqqζi, i � 1, . . . , n.

Proposition 5.3.12 ([GHJW97]). The Goldman symplectic form for relative character varieties

pωGqϕ : H
1
parpπg,n, gϕq �H1

parpπg,n, gϕq Ñ R has the following explicit form on a pair of 1-cocycles

u, v P Z1
parpπg,n, gϕq

pωGqϕpu, vq �
ģ

i�1

B
�
upR�1

i � b�1
i R�1

i�1q � vpaiq
�
�B

�
upa�1

i R�1
i �R�1

i�1q � vpbiq
�

�
n�1̧

i�1

BpupS�1
i q � vpci�1qq �

ņ

i�1

Bpξi � vpciqq,

where Ri :�
±

j iraj , bjs and Si :� c1 � � � ci.

Proof. The proof is similar to the proof of Proposition 5.2.3 and relies on the explicit fundamental

form for the surface group πg,n computed in Section 1.4.2, as well as on the explicit formulae for

cup and cap products in relative group cohomology provided by (1.3.11) and (1.3.14).

The first step consists in computing a preimage of u inside Z1pπg,n, Bπg,n, gϕq. Note that when

ξi is seen as a 0-cochain inside C0pBiπg,n, gϕq � g, then its differential is the 1-cocycle given by

Bξipciq � Adpϕpciqqξi � ξi � �upciq.

Using the definition of the differential (1.3.8), we observe that the 1-cochain pu,�ξ1, . . . ,�ξnq is

closed and is a preimage of u inside Z1pπg,n, Bπg,n, gϕq. Recalling the fundamental form from

Section 1.4.2 and the explicit formulae for the cap product in relative group cohomology provided

by (1.3.14), we can now compute

pωGqϕpu, vq � B�pu! vq" e�
ņ

i�1

B�pξi ! vq" ci, (5.3.1)

where we abbreviated e � γ �
°g

i�1 xi � yi � zi � wi � εi. When we develop each cup product

according to (1.3.11), we obtain

B�pu! vq" γ �
n�1̧

i�1

Bpupc1 � � � ciq �Adpϕpc1 � � � ciqqvpci�1qq

�
n�1̧

i�1

BpupSiq �AdpϕpSiqqvpci�1qq

B�pξi ! vq" ci � Bpξi � vpciqq.

The remaining term in the sum was already computed in Proposition 5.2.3. Using the Ad-invariance
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of B and the identity for the inverse upx�1q � �Adpϕpx�1qqupxq, we obtain

B�pu! vq" γ �
ņ

i�1

B�pξi ! vq" ci � ωGpu, vq � �
n�1̧

i�1

BpupSiq � vpci�1qq �
ņ

i�1

Bpξi � vpciqq.

(5.3.2)

It remains to subtract the term of Proposition 5.2.3 top conclude the proof.

Let us provide one more formula for the case of punctured sphere, i.e. when n � 0.

Lemma 5.3.13. When n � 0, the formula of Proposition 5.3.12 can be rewritten as

ωGpu, vq �
n�2̧

i�1

Bppζi�1 � ζi�2q � upS
�1
i�1qq. (5.3.3)

Proof. Using vpciq � ζi �Adpϕpciqqζi and the Ad-invariance of B, we get

BpupS�1
i�1q � vpciqq � Bpζi � upS

�1
i�1qq �BpAdpϕpc�1

i qqupS�1
i�1q � ζiq

By construction, S�1
i � c�1

i S�1
i�1 and thus upS�1

i q � upc�1
i q �Adpϕpc�1

i qqupS�1
i�1q. So,

BpupS�1
i�1q � vpciqq � Bpζi � upS

�1
i�1qq �Bpζi � upS

�1
i qq �Bpζi � upc

�1
i qq.

Therefore,

ωGpu, vq �
ņ

i�2

Bpζi � upS
�1
i qq �Bpζi � upS

�1
i�1qq

�Bpζ1 � upc1qq �
ņ

i�2

Bpζi � pupc
�1
i q � upciqq

�Bpζ2 � upS
�1
2 qq �

ņ

i�3

Bpζi � upS
�1
i qq �Bpζi � upS

�1
i�1qq

�
ņ

i�1

B
�
ζi � pupc

�1
i q � upciqq

�
�

n�2̧

i�1

B
�
pζi�1 � ζi�2q � upS

�1
i�1q

�
�

ņ

i�1

B
�
ζi � pupc

�1
i q � upciqq

�
loooooooooooooooomoooooooooooooooon

�:Ω

,

where in the second equality we used S�1
1 � c�1

1 and in the third equality that upS�1
n q � up1q � 0.

It remains to prove that Ω � 0. Using upx�1q � �Adpϕpx�1qqupxq, we get

Bpζi � upc
�1
i qq � �BpAdpϕpciqqζi � upciqq.

Therefore, using vpciq � ζi �Adpϕpciqqζi, we conclude

Ω �
ņ

i�1

Bpupciq � vpciqq.
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By construction, Bpup�q � vp�qq defines a 1-cocycle in Z1pπn,Rq. Closeness can also be computed

directly using (1.3.2), similarly as in the proof of Lemma 1.3.12. Therefore, Ω is equal to the

evaluation of the 1-cocycle Bpup�q � vp�qq on the 1-cycle c1 � . . .� cn. The 1-cycle
°n

i�1 ci vanishes

in homology (this is a consequence of the fact that
±n

i�1 ci � 1). Hence, Ω � Bpup1q � vp1qq � 0 as

desired.
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Chapter 6

Euler and Toledo numbers

Overview

The topology of a representation variety is notably known to be complicated. The enumeration of

its connected components is a non-trivial task. There exist some invariants that lets us approach

this problem. The most classical one is the so-called Euler number (Section 6.2), later generalized

as Toledo number (Section 6.3). The goal of this chapter is to recall their definitions. I take the

occasion to acknowledge the contribution by Jacques Audibert and Xenia Flamm to the material

presented in this chapter.

6.1 Preliminary observations

We will use the notation π0pXq to denote the number of connected components of a topological

space X. Our first result relates the number of connected of components of a space and of its

Hausdorffization which we introduced in Definition 4.2.1.

Lemma 6.1.1. If X denotes a topological space, then there is a bijection

π0pXq � π0pHauspXqq

induced by the projection X Ñ HauspXq.

Proof. Recall that HauspXq is defined to be the quotient X{�, where � is the equivalence relation

on X defined by x � y if and only if x � y for every equivalence relation � such that X{ � is

Hausdorff. Consider the equivalence relation � defined by x � y if and only if x and y are in

same connected component of X. The quotient X{ �� π0pXq is discrete, hence Hausdorff. The

projections X Ñ X{�Ñ X{� induce surjective maps

π0pXq Ñ π0pX{�q Ñ π0pX{�q � π0pXq.

We conclude that π0pXq � π0pX{�q.

The following standard fact will also come in handy later.
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Lemma 6.1.2. Let X be a topological space and G a topological group acting continuously on X.

The quotient map p : X Ñ X{G is open. Furthermore, if G is finite, then p is closed.

Proof. Let U � X be open. We need to prove that ppUq is open in the quotient topology, i.e. we

need to show that p�1pppUqq is open in X. We have

p�1pppUqq �
¤
gPG

gU,

which is open. By the same argument we can deduce that p�1pppCqq �
�

gPG gC is closed if C is

closed and G is finite.

Lemma 6.1.3. Let X be a topological space with a continuous action of a connected topological

group G. Then, there is a bijection

π0pXq � π0pX{Gq

induced by the projection X Ñ X{G.

Proof. Since G is connected and the action is continuous, G preserves each connected component

of X, i.e. it acts trivially on π0pXq. The quotient map p : X Ñ X{G is an open (by Lemma 6.1.2),

surjective, and continuous map. If C1 and C2 denote two distinct connected components of X,

then ppC1q and ppC2q are disjoint because G preserves each connected component of X. Since p

is an open map, ppCq is open in X{G for every connected component C of X. Using that p is

surjective, we conclude that each connected component of X{G is covered by disjoint open images

of connected components of X. By connecetedness, there must be exactly one. We conlcude that

π0pXq � π0pX{Gq.

When we apply the above observations to the context of character varieties, we conclude that

the number of connected components of the representation variety for the pair pΓ, Gq is the same

as for the Hausdorff character variety, assuming that G is connected.

Corollary 6.1.4. If G is a connected Lie group, then

π0pHompΓ, Gqq � π0

�
HompΓ, Gq{ InnpGq

�
� π0

�
RepT2pΓ, Gq

�
.

6.2 Euler number

The idea behind the definition of the Euler number is to measure how hard it is to lift a represen-

tation Γ Ñ G to a representation in the universal cover of G. The fundamental result to keep in

mind is the following.

Theorem 6.2.1. Let Γ be a group (not necessarily finitely generated) and G ne a path-connected

topological group. Let G1 be a covering group of G. A homomorphism ϕ : Γ Ñ G lifts to a homor-

phism Γ Ñ G1 if and only if every homomorphism in the path-component of ϕ inside HompΓ, Gq

lifts.
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A proof of Theorem 6.2.1 can be found in [Cul86, Thm. 4.1] The construction of the Euler

number is particularly interesting in the case when Γ � πg,0 is a closed surface group (and, as we

will see, is also particular to closed surface groups).

6.2.1 Definition

We will write rG to denote the universal cover of G and pick any e P rG that lifts 1 P G (the choice

of e turns rG into a topological group with neutral element e). There is a short exact sequence of

topological groups

1Ñ π1pGq Ñ rGÑ GÑ 1.

The group π1pGq is equipped with the discrete topology and naturally embeds inside rG.

Lemma 6.2.2. Let G be a connected topological group and N � G be a discrete normal subgroup

of G. Then N lies in the center ZpGq of G.

Proof. For n P N we consider the map

fn : GÑ N, g ÞÑ gng�1.

Then fn is continuous, and since G is connected, so is the image of fn. Since N is discrete, fn is

constant on G and equal to n. Thus N commutes with every element in G, hence N � ZpGq is

normal.

Corollary 6.2.3. The group π1pGq lies in Zp rGq.
Definition 6.2.4 (Euler number). Let Γ � πg,0 be a closed surface group. The Euler number of

a representation ϕ : πg,0 Ñ G is the element of π1pGq defined by

eupϕq :�
g¹

i�1

��ϕpaiq, �ϕpbiq� ,
where �ϕpaiq, �ϕpbiq P rG are any lifts of ϕpaiq, ϕpbiq.

The name Euler “number” comes from the case whereG � PSLp2,Rq, in which case π1pPSLp2,Rq
can be identified with Z. Note that eupϕq is a lift of 1 P G which explain why it is an element of

π1pGq � rG.

Lemma 6.2.5. The Euler number is independent of the choice of the lifts.

Proof. Different choices of lifts differ by elements of π1pGq. Note that each generator and its inverse

appear exactly once in the definition of the Euler invariant. So, since π1pGq lies inside Zp rGq by
Lemma 6.2.2, the product is indeed independent of the choice of the lifts.

Lemma 6.2.6. The Euler number is a continuous function

eu: Hompπg, Gq Ñ π1pGq,

that factors through π0pHompπg, Gqq.
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Proof. The continuity is a consequence of Lemma 6.2.5 and the properties of universal covers. Since

π1pGq is discrete, the Euler number is thus constant on connected components of Hompπg, Gq.

Lemma 6.2.7. The Euler number is natural in the sense that if H is a subgroup of G, then the

following diagram commutes

Hompπg, Hq π1pHq

Hompπg, Gq π1pGq.

eu

eu

Remark 6.2.8. In general, the Euler number eu: π0pHompπg, Gqq Ñ π1pGq is neither injective nor

surjective. It is for instance injective if G � PSLp2,Rq, but it fails to be injective for G � SLp2,Rq.
It is also not surjective in both cases.

If G is semi-simple and not of Hermitian type, then the Euler number is always surjective. This

follows from Theorem 6.2.9, since π1pGq � π1pKq, where K is a maximal compact subgroup of G.

If G is not of Hermitian type, then K is semi-simple.

6.2.2 Compact and complex Lie groups

In some cases, it’s possible to classify all the components of a representation variety using the Euler

number only. This is the case when the Euler number is an injective function. This works when G

is either a connected semisimple compact Lie group or a connected semisimple complex Lie group.

The first statement was proved by Atiyah-Bott and a proof of the second statement can be found

in [Li93, Thm. 0.1].

Theorem 6.2.9 ([AB83]). If G is a connected and compact semisimple Lie group, then the con-

nected components of Hompπg,0, Gq are classified by π1pGq via the Euler number.

Theorem 6.2.10. If G is a connected and complex semisimple Lie group, then connected compo-

nents of Hompπg,0, Gq are classified by π1pGq via the Euler number.

6.2.3 The case of SLpn,Rq

There is another case where the Euler number can be used to classify the connected components

of the representation variety, namely when G � PSLp2,Rq. In that case, the Euler number takes

values in π1pPSLp2,Rqq � Z. The classification is due Goldman who proved the following.

Theorem 6.2.11 ([Gol88]). When G � PSLp2,Rq, then eu: π0pHompπg,0,PSLp2,Rqqq Ñ Z is

injective and its image is Z X r2 � 2g, 2g � 2s. In particular, Hompπg,0,PSLp2,Rqq has 4g � 3

connected components.

It is worth pointing out that not all representation πg,0 Ñ PSLp2,Rq lift to representations in

SLp2,Rq. Actually, we have the following statement.
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Lemma 6.2.12. A representation ϕ : πg,0 Ñ PSLp2,Rq lifts to a representation πg,0 Ñ SLp2,Rq if
and only if eupϕq is even. In other words, the image of

p� : π0pHompπg,SLp2,Rqqq Ñ π0pHompπg,PSLp2,Rqqq

is eu�1p2Zq, where p : SLp2,Rq Ñ PSLp2,Rq is the natural quotient map.

Proof. The Lie group SLp2,Rq is a double cover of PSLp2,Rq because ZpSLp2,Rqq � t�Iu. The

universal cover of PSLp2,Rq therefore identifies with the universal cover �SLp2,Rq of SLp2,Rq. There
is a group homomorphism ZÑ Z{2Z induced by

π1pPSLp2,Rqq ÝÑ �PSLp2, Rq � �SLp2, Rq π
ÝÑ SLp2,Rq.

Pick e P π�1p�Iq. Since e is in the kernel of �SLp2,Rq Ñ PSLp2,Rq, there is z P π1pPSLp2,Rqq
that is mapped to e under π1pPSLp2,Rqq Ñ �SLp2, Rq. This shows that the induced homomorphism

ZÑ Z{2Z is non-trivial and, hence, is the reduction of integers modulo 2.

Let ϕ : πg,0 Ñ PSLp2,Rq be a representation. If eupϕq is even, then ϕ lifts to ϕ : πg,0 Ñ SLp2,Rq
defined by ϕpaiq :� πp�ϕpaiqq and ϕpbiq :� πp�ϕpbiqq, where �ϕpaiq, �ϕpbiq P �SLp2,Rq are any lifts of

ϕpaiq, ϕpbiq. Conversely, if ϕ lifts, then eupϕq P p�1
� p0q is an even number.

A consequence of the proof of Lemma 6.2.12 is that the induced map π1pSLp2,Rqq Ñ π1pPSLp2,Rqq,
seen as a map Z Ñ Z, is the multiplication by 2. This means that a representation ϕ : πg,0 Ñ

PSLp2,Rq lifts if and only if eupϕq is in the image of π1pSLp2,Rqq Ñ π1pPSLp2,Rqq. We can go one

step further and ask for the number of connected components of Hompπg,0,SLp2,Rqq that lie above
a given connected component of Hompπg,0,PSLp2,Rqq. We start with following general lemma.

Lemma 6.2.13. We denote by AdpGq � G{ZpGq the adjoint Lie group of a Lie group G. Assume

that ZpGq is finite and has cardinality m. Let C be a connected component of Hompπg,0,AdpGqq

that lifts to Hompπg,0, Gq. Then p�1pCq is a m2g-fold cover of C.

Proof. Any ϕ P C lifts in m2g different ways since there are exactly m choices of lift for any of the

ϕpa1q, ϕpb1q, . . . , ϕpagq, ϕpbgq.

Corollary 6.2.14. Each of the two connected components of Hompπg,0,PSLp2,Rqq that correspond
to Teichmüller space lift to 22g distinct connected components of Hompπg,0,SLp2,Rqq.

Proof. This follows form the fact that the Teichmüller components inside the character variety of

pπg,0,PSLp2,Rqq are balls and hence simply connected. So, any finite degree cover of Teichmüller

space must be trivial.

Goldman proved each of the 2g � 4 connected components of Hompπg,0,PSLp2,Rqq with Euler

number in 2ZX r4� 2g, 2g � 4s lifts inside the sane connected component of Hompπg,0,SLp2,Rqq.

Theorem 6.2.15 ([Gol88]). The number of connected components of Hompπg,0,SLp2,Rqq is 22g�1�

2g � 3.

Before closing this section, let us mention that Hitchin later computed (using different methods)

the number of connected components in the case G � PSLpn,Rq for n ¥ 3.
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Theorem 6.2.16 ([Hit92]). If G � PSLpn,Rq, then Hompπg,0,PSLpn,Rqq has 3 connected compo-

nents if n is odd and 6 connected components if n is even.

If we are interested in determining which representations lift to SLpn,Rq, we can proceed as

follows. Note however that the question is trivial when n is an odd integer since in that case

SLpn,Rq � PSLpn,Rq.

Lemma 6.2.17. Let n ¥ 4 be an even number. It holds that

π1pSLpn,Rqq � Z{2Z, π1pPSLpn,Rqq �

#
Z{2Z� Z{2Z, if n � 0 pmod 4q,

Z{4Z, if n � 2 pmod 4q.

Lemma 6.2.18. Let n ¥ 4 be an even number. A representation ϕ : πg,0 Ñ PSLpn,Rq lifts to a rep-

resentation πg,0 Ñ SLpn,Rq if and only if eupϕq is in the image of π1pSLpn,Rqq Ñ π1pPSLpn,Rqq.

The proof of Lemma 6.2.18 is analogous to that of Lemma 6.2.12.

6.3 Toledo number

The Toledo number was defined by Burger-Iozzi-Wienhard in [BIW10] for representations of surface

groups Γ � πg,n into Hermitian Lie groups G. When n ¥ 1, then πg,n is a free group, so every

representation πg,n Ñ G will lift to the universal cover of G. In order to define a meaningful

invariant, we need to somehow take into account some boundary data of πg,n.

6.3.1 Hermitian Lie groups

Recall that a Hermitian Lie group G is a semisimple Lie group, with finite center and no compact

factors, such that its associated symmetric space X is a Hermitian manifold. The Kähler form

obtained from the unique G-invariant Hermitian metric of constant sectional curvature �1 on X

is denoted ωX . The classical examples of Hermitian Lie groups include SUpp, qq and Spp2n,Rq.
For instance, the symmetric space of SLp2,Rq is the upper half-plane X � H on which SLp2,Rq
acts by Möbius transformations. More considerations can be found in Appendix A. The group

of orientation-preserving isometries of H is PSLp2,Rq and the associated Kähler form is ωH �

pdx^ dyq{y2.

6.3.2 The area of a triangle

Let us now fix a Hermitian Lie group G with symmetric space X. Given three points z1, z2, z3 in

X, we denote by ∆pz1, z2, z3q the oriented geodesic triangle in X with vertices z1, z2, z3. Its signed

area, computed with the area form associated to ωX , is denoted by

r∆pz1, z2, z3qs :�

»
∆pz1,z2,z3q

ωX .
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Fix a basepoint z P X and consider the function

c : G�GÑ R (6.3.1)

pg1, g2q Ñ
�
∆
�
z, g1z, g1g2z

��
.

Lemma 6.3.1. The function c satisfies the cocycle condition

cpg2, g3q � cpg1g2, g3q � cpg1, g2g3q � cpg1, g2q � 0 (6.3.2)

for every g1, g2, g3 P G, compare (1.3.2).

Proof. We need the following identity: if z1, z2, z3 are any three points in X, then, for any fourth

point w P X,

r∆pz1, z2, z3qs � r∆pz1, z2, wqs � r∆pz2, z3, wqs � r∆pz3, z1, wqs. (6.3.3)

The following picture should convince the reader of (6.3.3).

z2

z1

z3

w

z2

z1

z3

w

In terms of triangle areas, the cocycle condition (6.3.2) is equivalent to

r∆pz, g2z, g2g3zqs � r∆pz, g1z, g1g2g3zqs

being equal to

r∆pz, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2zqs.

Since g1 P G acts by isometry on X and preserves the orientation, the latter is equivalent to

r∆pg1z, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2g3zqs

being equal to

r∆pz, g1g2z, g1g2g3zqs � r∆pz, g1z, g1g2zqs.

This is precisely formula (6.3.3) applied to z1 � z, z2 � g1z, z3 � g1g2z and w � g1g2g3z.

Lemma 6.3.1 implies that c defines a cohomology class κ :� rcs inside H2pG,Rq. The function

c is bounded because the area of a geodesic triangle in X is bounded. This means that the

cohomology class κ gives a class κ P H2
b pG,Rq in the second bounded cohomology group of G.

We recommend [Löh10] for an introduction to bounded group cohomology.

Lemma 6.3.2. The cohomology class κ is independent of the choice of the basepoint z involved in

the definition of c (whereas c does depend on the point z).
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Proof. For the purpose of this proof, we will write cz instead of c for the cocycle (6.3.1) to emphasize

the dependence on the basepoint z. Given another basepoint x P X, we prove that cz � cx is a

coboundary.

First, we develop czpg1, g2q � r∆pz, g1z, g1g2zqs using (6.3.3) with w � g1x. We obtain

czpg1, g2q � r∆pz, g1z, g1xqs � r∆pg1z, g1g2z, g1xqs � r∆pg1g2z, z, g1xqs

� �r∆px, z, g�1
1 zqs � r∆px, z, g2zqs � r∆pg1g2z, z, g1xqs.

Now, we develop r∆pg1g2z, z, g1xqs using (6.3.3) with w � x. This gives

r∆pg1g2z, z, g1xqs � r∆pg1g2z, z, xqs � r∆pz, g1x, xqs � r∆pg1x, g1g2z, xqs

� �r∆px, z, g1g2zqs � r∆pz, x, g1xqs � r∆pg1x, g1g2z, xqs.

Finally, we develop r∆pg1x, g1g2z, xqs using (6.3.3) with w � g1g2x. We have

r∆pg1x, g1g2z, xqs � r∆pg1x, g1g2z, g1g2xqs � r∆pg1g2z, x, g1g2xqs � r∆px, g1x, g1g2xqs

� r∆pz, x, g�1
2 xqs � r∆pz, x, g�1

2 g�1
1 xqs � cxpg1, g2q.

Consider the 1-cochain vx,zpgq :� r∆px, z, gzqs. It holds that

Bvx,zpg1, g2q � r∆px, z, g1zqs � r∆px, z, g2zqs � r∆px, z, g1g2zqs.

In particular, Bvx,zpg, g
�1q � r∆px, z, gzqs � r∆px, z, g�1zqs. The previous computations show that

czpg1, g2q � cxpg1, g2q � Bvx,zpg1, g2q � Bvx,zpg1, g
�1
1 q � Bvz,xpg

�1
2 , g�1

1 q � Bvz,xpg1, g
�1
1 q.

We conclude as predicted that cz � cx is a coboundary.

6.3.3 Group cohomological definition

Given a representation ϕ : πg,n Ñ G, we can pull back κ to the class ϕ�κ inside H2
b pπg,n,Rq. An

important property of the bounded cohomology of the group πg,n is that the map

j : H2
b pπg,n, Bπg,n,Rq Ñ H2

b pπg,n,Rq (6.3.4)

from the long exact sequence in cohomology for the pair
�
πg,n, Bπg,n

�
is an isomorphism, see [Löh10,

Thm. 2.6.14]. Recall finally that integrating along a fundamental class rπg,n, Bπg,ns gives an iso-

morphism H2pπg,n, Bπg,n,Rq � R.

Definition 6.3.3 (Toledo number, [BIW10]). Let G be a Hermitian Lie group. The Toledo number

of a representation ϕ : πg,n Ñ G is the real number defined by

Tolpϕq :� j�1pϕ�κq" rπg,n, Bπg,ns.
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6.3.4 Properties

The first thing to point out is that the Toledo number is a generalization of the Euler number for

representations of closed surface groups into PSLp2,Rq. This is explained in [BIW10]. Now, we

proceed to other basic properties of the Toledo number.

Lemma 6.3.4. The volume is invariant under the conjugation action of G on Hompπg,n, Gq and

thus descends to a function

Tol : Hompπg,n, Gq{ InnpGq Ñ R.

Proof. Consider the cocycle c defined in (6.3.1). The diagonal conjugation action of an element

g P G on G � G amounts to a change of basepoint in the definition of c. Indeed, if cz denotes

the cocycle (6.3.1) defined using the basepoint z P X, then it holds that czpgg1g
�1, gg2g

�1q �

cg�1zpg1, g2q. Since, by Lemma 6.3.2, the cohomology class κ is independent of the choice of the

basepoint defining c, we conclude that the volume is an invariant of conjugation.

The main properties of the volume are the following. We denote by χpΣg,nq the Euler charac-

teristic of Σg,n.

Theorem 6.3.5 ([BIW10]). The volume, seen as a function Tol : Hompπg,n, Gq Ñ R, has the

following properties:

1. Tol is a continuous function.

2. Tol is locally constant on each relative representation variety.

3. (Milnor-Wood inequality) Tol is bounded:

|Tol | ¤ |χpΣg,nq| rankpGq,

moreover, if n ¡ 0, then Tol is a surjective function onto the interval

r|χpΣg,nq| rankpGq, |χpΣg,nq| rankpGqs .

4. Tol is additive: if Σg,n is separated by a simple closed curve into two surfaces S1 and S2,

then, for every ϕ P Hompπg,n, Gq,

volpϕq � volpϕæπ1pS1qq � volpϕæπ1pS2qq.

The first and second statement in Theorem 6.3.5 imply that the set of representations of a given

Toledo number forms a collection of connected components of each relative character variety. In

general, there is no reason for this collection to contain a unique connected component. Recall that

in the case of a closed surface group and G � PSLp2,Rq, the Euler number completely distinguishes

the connected components of the character variety [Gol88].

The Toledo number has an interesting symmetry that comes from reversing the orientation of

X. By definition, for each z P X, there exists an orientation-reversing isometry sz of X that

fixes z. This gives an involutive outer automorphism σ : G Ñ G defined by σpgq :� sz � g � sz.

80



Indeed, if g P G is an orientation-preserving isometry of X, then sz � g � sz is again an orientation-

preserving isometry of X, hence belongs to G. Using the functoriality of representation varieties

(see Lemma 2.1.7), the involution σ descends to an analytic involution

σ : Hompπg,n, Gq Ñ Hompπg,n, Gq.

Lemma 6.3.6. The involution σ satisfies the following properties:

1. σ preserves conjugacy classes of representations, and therefore descends to an involution

σ : Hompπg,n, Gq{ InnpGq Ñ Hompπg,n, Gq{ InnpGq.

2. σ depends on the choice of z P X only up to conjugation, in particular, σ is independent of

the choice of z P X.

3. For any representation ϕ P Hompπg,n, Gq it holds that

Tolpσpϕqq � �Tolpϕq.

Proof. The first assertion follows from σpgϕg�1q � psz �g�szqσpϕqpsz �g
�1�szq and the observation

that sz � g � sz is orientation-preserving. If z1 P X is a second point, then it holds that sz1 �

g � sz1 � psz1 � szqpsz � g � szqpsz � sz1q, which proves the second assertion because sz1 � sz is

orientation-preserving. Finally, note that pσpϕqq�κ � ϕ�pσ�κq and σ�κ � �κ because sz reverses

the orientation of X.

Example 6.3.7. Consider the case G � SLp2,Rq. An example of orientation-reversing isometry

of the upper half-plane is given by z ÞÑ �z. It fixes the imaginary axis. The associated involutive

outer automorphism σ of SLp2,Rq is given by conjugation by the matrix

�
1 0

0 �1

�
of determinant

�1.

The involution σ : Hompπg,n, Gq Ñ Hompπg,n, Gq maps the relative representation variety

HomCpπg,n, Gq to the relative representation variety HomσpCqpπg,n, Gq. Since G is of Hermitian

type, it is by definition semisimple, hence quadrable. The Goldman symplectic form built from the

Killing form on g is invariant under σ. This is a consequence of the fact that the Killing form is in-

variant under automorphisms of g. In this case, the involution σ : GÑ G induces an automorphism

Dσ : gÑ g.

6.3.5 Alternative definition via rotation numbers

A downside of Definition 6.3.3 is the lack of computability. Given a representation ϕ : πg,n Ñ G,

computing j�1pϕ�κqmeans finding a primitive inH1pBiπg,n,Rq for each restriction ϕ�κæBiπg,n
. This

is a non-trivial task in general. There is an alternative definition of the volume of a representation

that makes it easier to compute. It is based on a notion of rotation number that generalizes

the classical notion of rotation number for homeomorphisms of the circle described for instance

in [Ghy01]. The rotation number, as introduced by Burger-Iozzi-Wienhard, is a function ρ : G Ñ
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R{Z that lifts to a quasimorphism rρ : rGÑ R of the universal cover ofG. We explain the construction

in the case G � PSLp2,Rq and refer the reader to [BIW10, §7] for the general construction. The

main result is the following.

Theorem 6.3.8 ([BIW10]). Let rϕ : πg,n Ñ rG be a group homomorphism that covers ϕ. Then

Tolpϕq � �
ņ

i�1

rρ�rϕpciq	 ,

where ci are the generators of πg,n from presentation (1.4.1).

Let’s study the case G � PSLp2,Rq. We fix a topological group structure on �PSLp2,Rq by fixing

a unit e in the fibre over the identity. The action of PSLp2,Rq on the circle R{Z (see Lemma A.2.1)

gives a group homomorphism PSLp2,Rq Ñ Homeo�pR{Zq. The classical rotation number is a

function rot : Homeo�pR{2πZq Ñ R{Z defined as follows. Given f P Homeo�pR{Zq, lift it to an

orientation-preserving F : R Ñ R, uniquely defined up to translation by an integer. The group of

all such lifts is denoted by �Homeo
�
pR{2πZq. We can then compute the number

RotpF q :� lim
nÑ8

Fnpxq � x

n

where x is any real number. The limit always exists and is independent of x. The rotation

number of f is then defined to be the projection of RotpF q inside R{Z. Composing the map

PSLp2,Rq Ñ Homeo�pR{Zq with rot : Homeo�pR{2πZq Ñ R{Z gives the rotation number

ρ : PSLp2,Rq Ñ R{Z.

The action of PSLp2,Rq on R{Z lifts to a faithful action of �PSLp2,Rq on the universal cover

R{Z, defining a group homomorphism �PSLp2,Rq Ñ �Homeo
�
pR{2πZq. When we compose it with

Rot: �Homeo
�
pR{2πZq Ñ R, we get a quasimorphism

rρ : PSLp2,Rq Ñ R.

It can also be described as the unique lift of ρ : PSLp2,Rq Ñ R{Z satisfying rρpeq � 0.

We can describe ρmore explicitly by considering conjugacy classes in PSLp2,Rq. Recall that, if E
denotes the set of elliptic conjugacy classes in PSLp2,Rq, then there is a well-defined angle function

ϑ : E Ñ p0, 2πq, see Lemma A.2.5. It extends to an upper semi-continuous function ϑ : PSLp2,Rq Ñ
r0, 2πs defined by

ϑpAq :�

$'&'%
ϑpAq, if A is elliptic,

0, if A is hyperbolic or positively parabolic,

2π, if A is the identity or negatively parabolic.

(6.3.5)

The notions of positively and negatively parabolic refer to the two conjugacy classes of parabolic

elements in PSLp2,Rq represented by (A.2.6). The definition of the function ϑ is ad hoc, however
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it satisfies ϑ � ρ modulo 2π. In particular, the correction term

kpϕq :�

�
1

2π

ņ

i�1

ϑpϕpciqq �
ņ

i�1

rρ�rϕpciq	
�

(6.3.6)

is an integer called the relative Euler class of ϕ. It was introduced by Deroin-Tholozan in [DT19].

The definition of the relative Euler class very much depends on the choice of the extension ϑ of ϑ.

Theorem 6.3.8 implies

kpϕq � Tolpϕq �
ņ

i�1

ϑpϕpciqq.

The range of the relative Euler class over Hompπg,n, Gq was studied in [DT19], where the following

was proved.

Proposition 6.3.9 ([DT19]). Let ϕ : πg,n Ñ PSLp2,Rq be a representation. Then

kpϕq ¤ max

#
|χpΣg,nq|,

1

2π

ņ

i�1

ϑpϕpciqq

+
.

Remark 6.3.10. Observe that, as soon as g ¥ 1, then |χpΣg,nq| ¥ n ¥ 1
2π

°n
i�1 ϑpϕpciqq and

thus the inequality kpϕq ¤ |χpΣg,nq| prevails. In the case g � 0, it is however possible that
1
2π

°n
i�1 ϑpϕpciqq ¡ |χpΣ0,nq|. The representation which satisfy the latter have very interesting

properties, such as being totally elliptic. For further considerations, the reader may consult [DT19]

or [Mar21].
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Chapter 7

Mapping class group dynamics

Overview

This chapter is an expansion on some results and remarks from Section 2.2 on the mapping class

group action on character varieties. We start by reminding the reader of some basic properties of

the AutpΓq-action on HompΓ, Gq in Section 7.1. We then proceed with a reminder on mapping class

groups in Section 7.2 and conclude the chapter with some basic properties of the mapping class

group action on character varieties 7.3.

7.1 Remarks on the AutpΓq-action

Recall that the AutpΓq-action on the representation variety HompΓ, Gq descends to an action of

the outer automorphisms group OutpΓq on the quotient HompΓ, Gq{ InnpGq. This action preserves

the analytic/algebraic structure of HompΓ, Gq by Lemma 2.2.1. When Γ � πg,n is a surface group,

then Outpπg,nq contains the pure mapping class group of the surface Σg,n as a subgroup, com-

pare Example 2.2.3. The induced action is the so-called mapping class group action on character

varieties.

Let us start with some general considerations on the AutpΓq-action on HompΓ, Gq and then

specialize to the case of a surface group.

Lemma 7.1.1. The AutpΓq-action on HompΓ, Gq preserves the subspaces of (very) regular, reduc-

tive, irreducible, good and (almost) Zariski dense representations.

Proof. All these particular notions of representations are defined in terms of the image of the

representation. However, for any τ P AutpΓq and ϕ P HompΓ, Gq, it holds that ϕpΓq � pϕ�τqpΓq.

A consequence of Lemma 7.1.1 is that the OutpΓq-action on HompΓ, Gq{ InnpGq restricts to an

action of OutpΓq on the GIT character variety RepGITpΓ, Gq (by Theorem 4.4.6, assuming G is a

reductive complex algebraic group) and on the analytic character variety Rep8pπg,0, Gq.

Lemma 7.1.2. The AutpΓq-action on HompΓ, Gq preserves closed orbits.

Proof. This is an immediate consequence of Lemma 2.2.1.
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In particular, Lemma 7.1.2 implies that the AutpΓq-action on HompΓ, Gq induces an OutpΓq-

action on the T1 character variety RepT1pπg,0, Gq. It is not clear to the author whether there is an

induced action of OutpΓq on the Hausdorff character variety in general.

7.2 Recap on mapping class groups

The mapping class group of a closed and oriented surface Σg,0 is the group of isotopy classes of

orientation-preserving homeomorphisms of Σg,0. For punctured oriented surfaces Σg,n, the pure

mapping class group is defined to be the group of isotopy classes of orientation-preserving homeo-

morphisms of Σg,n that fix each puncture individually. It contrasts with the mapping class group

where punctures can be permuted. Our notation for the pure mapping class group will be ModpΣg,nq

and the isotopy class of an orientation-preserving homeomorphism f : Σg,n Ñ Σg,n is denoted

rf s P ModpΣg,nq. The group law is given by composition and the identity element correspond to

the identity homeomorphism.

Theorem 7.2.1. The mapping class group is finitely presented. Generators can be chosen to be

Dehn twists along simple closed curves on Σg,n.

More details about Theorem 7.2.1, including proof and explicit generating family, can be

found in [FM12, §4]. A homeomorphism f of Σg,n induces a group isomorphism π1pΣg,n, xq Ñ

π1pΣg,n, fpxqq. After choosing a continuous path from x to fpxq, we get an induced automorphism

of the fundamental group of Σg,n (that depends up to conjugation on the choice of the path). This

gives a group homomorphism

ModpΣg,nq Ñ Outpπg,nq.

The Dehn–Nielsen Theorem says that it is injective and provides a description of its image.

Theorem 7.2.2 (Dehn–Nielsen Theorem). The mapping class group ModpΣg,0q is an index two

subgroup of Outpπg,0q for g ¥ 1 (and is trivial for g � 0). Moreover, if Σg,n has negative Euler

characteristic, then the mapping class group ModpΣg,nq is an index two subgroup of Out�pπg,nq,

where Out�pπg,nq is the subgroup of Outpπg,nq that consists of the outer automorphisms that act by

conjugation on each of the generators ci of πg,n (for the presentation (1.4.1)).

We refer the reader to [FM12, §8] for more considerations on the Dehn-Nielsen Theorem. The-

orem 7.2.2 implies that the Autpπg,0q-action on the representation variety Hompπg,0, Gq induces an

action

ModpΣg,0q ýHompπg,0, Gq{ InnpGq.

The action is analytic/algebraic on the regular part of the quotient by Lemma 2.2.1. In the case of

a punctured surface, the action of Autpπg,nq on Hompπg,n, Gq restricts to an action of Aut�pπg,nq

on any relative representation variety HomCpπg,n, Gq. This gives, by Theorem 7.2.2, an action

ModpΣg,nq ýHomCpπg,n, Gq{ InnpGq,

for any choice of conjugacy classes C P pG{Gqn. These two actions are what we call the mapping

class group action on character varieties.
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7.3 Basic properties

The first property is that the mapping class group action preserves the Goldman symplectic form.

We start with the case of a closed surface. Let rf s P ModpΣg,0q and take any τ P Autpπg,0q

that lies over the image of rf s inside Outpπg,0q. We choose the generator rπg,0s of H2pπg,0,Zq
that corresponds to the orientation of the surface Σg,0. Since f is orientation-preserving, it

holds that τ�rπg,0s � rπg,0s. For any ϕ P Hompπg,0, Gq, the automorphism τ induces a map

pdτqϕ : Z
1pπg,0, gϕq Ñ Z1pπg,0, gϕ�τ q, v ÞÑ v � τ , on the Zariski tangent spaces to the representation

variety.

Lemma 7.3.1. If ωG denotes the Goldman symplectic form from Definition 5.1.2, then, for any

ϕ P Hompπg,0, Gq, the following diagram commutes

Z1pπg,0, gϕq � Z1pπg,0, gϕq R

Z1pπg,0, gϕ�τ q � Z1pπg,0, gϕ�τ q

pdτqϕ�pdτqϕ

pωGqϕ

pωGqϕ�τ

In other words, it holds that

τ�ωG � ωG .

Proof. Let B : g � g Ñ R be the pairing used in the definition of ωG . For any v, w P Z1pπg,0, gϕq,

we have

pωGqϕ�τ pv � τ, w � τq � Bpv � τ, w � τq" rπg,0s

� Bpv, wq" τ�rπg,0s.

Since τ�rπg,0s � rπg,0s, we conclude pωGqϕ�τ pv � τ, w � τq � pωGqϕpv, wq.

As a consequence of Lemma 7.3.1, we obtain that the ModpΣg,0q-action on the quotient Hompπg,0, Gq{ InnpGq

preserves the Goldman symplectic measure νG from Definition ??.

The situation is similar for punctured surfaces. Let rf s P ModpΣg,nq and take any τ P Aut�pπg,nq

that lies over the image of rf s inside Out�pπg,nq. The generator rπg,n, Bπg,ns of H2pπg,n, Bπg,n,Zq is
again chosen to correspond to the orientation of the surface Σg,n. Similarly as before, τ�rπg,n, Bπg,ns �

rπg,n, Bπg,ns. Moreover, the map pdτqϕ restricts to to a map pdτqϕ : Z
1
parpπg,n, gϕq Ñ Z1

parpπg,n, gϕ�τ q.

Indeed, note that if vpciq � ξi �Adpϕpciqqξi and τpciq � gicig
�1
i , then

pv � τqpciq �
�
vpgiq �Adpϕpgiqqξi

�
�Ad

�
pϕ � τqpciq

��
vpgiq �Adpϕpgiqqξi

�
.

Lemma 7.3.2. If ωG denotes the Goldman symplectic form from Definition 5.3.3, then, for any
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ϕ P HomCpπg,n, Gq, the following diagram commutes

Z1
parpπg,n, gϕq � Z1

parpπg,n, gϕq R

Z1
parpπg,n, gϕ�τ q � Z1

parpπg,n, gϕ�τ q

pdτqϕ�pdτqϕ

pωGqϕ

pωGqϕ�τ

In other words, it holds that

τ�ωG � ωG .

The proof is analogous to the proof of Lemma 7.3.1.

The second property is that the mapping class group action also preserves the Toledo number

of a representation. As before, let rf s P ModpΣg,nq and take any τ P Aut�pπg,nq that lies over the

image of rf s inside Out�pπg,nq. Again, τ�rπg,n, Bπg,ns � rπg,n, Bπg,ns.

Lemma 7.3.3. Let G be a Hermitian Lie group. For any ϕ P HomCpπg,n, Gq, it holds that

Tolpϕ � τq � Tolpϕq.

Proof. We compute directly from Definition 6.3.3 that

Tolpϕ � τq � j�1
�
pϕ � τq�κq" rπg,n, Bπg,ns

� j�1
�
τ�ϕ�κq" rπg,n, Bπg,ns

� j�1
�
ϕ�κq" τ�rπg,n, Bπg,ns.

We conclude by using τ�rπg,n, Bπg,ns � rπg,n, Bπg,ns.
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Appendix A

The group PSLp2,Rq

A.1 Generalities

We introduced SLp2,Rq as the subgroup of SLp2,Cq consisting of real matrices in Section 1.2.2. The

group SLp2,Rq is Zariski dense inside SLp2,Cq by Theorem 1.2.5 (actually, even the group SLp2,Zq
is Zariski dense in SLp2,Cq). The maximal compact subgroup of SLp2,Rq is SOp2q. Note that SOp2q

is Zariski closed inside SLp2,Rq by Theorem 1.2.6, but the Zariski closure of SOp2q inside SLp2,Cq
is SOp2,Cq. The center of SLp2,Rq is ZpSLp2,Rqq � t�Iu. The center-free quotient SLp2,Rq{t�Iu
is the adjoint group of SLp2,Rq and is traditionally denoted by PSLp2,Rq. If A P SLp2,Rq, then we

will denote by �A its projection inside PSLp2,Rq. Even if PSLp2,Rq is not group of 2�2 matrices,

it turns out that it can be realized as a liner Lie group of �3 matrices.

Lemma A.1.1. The group PSLp2,Rq can be identified with the conjugate of the matrix group

SOp2, 1q� that consists of special linear transformations of R3 preserving the Hermitian form y2�xz

via the map

�

�
a b

c d

�
ÞÑ

���a2 2ab b2

ac ad� bc bd

c2 2cd d2

��
.

Lemma A.1.1 highlights the hyperbolic nature of PSLp2,Rq. More precisely, PSLp2,Rq can be

identified with the group of orientation-preserving isometries of the upper half-plane H � tz P C :

Impzq ¡ 0u. It acts on H by Möbius transformations

�

�
a b

c d

�
� z :�

az � b

cz � d
.

Lemma A.1.2. The group PSLp2,Rq has the topology of an open solid torus.

Proof. The transitive action of PSLp2,Rq on H extends to a transitive action on the unit tangent

bundle T 1H. It is not too hard to see that the stabilizers of points for the action of PSLp2,Rq on
T 1H are trivial. We conclude that PSLp2,Rq and T 1H are homeomorphic.
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A.2 Conjugacy classes

The action of PSLp2,Rq on H extends to the boundary BH.

Lemma A.2.1. The action of PSLp2,Rq on BH is isomorphic to the projective action of PSLp2,Rq
on RP1 � R2{R�.

Proof. Identifying BH � R Y t8u, one can define a homeomorphism f : BH Ñ RP1 by x ÞÑ r1 : xs

and 8 ÞÑ r0 : 1s. We claim that f conjugates the two actions of PSLp2,Rq. Indeed, it is sufficient to

compare stabilizers, and it is easy to see that the stabilizers of r1 : 0s P RP1 and of 0 P BH coincide

with the subgroup of upper triangular matrices in PSLp2,Rq.

Definition A.2.2. The open subspace of PSLp2,Rq consisting of elements whose trace in absolute

value is smaller than 2 is called the subspace of elliptic elements of PSLp2,Rq. It is denoted

E � PSLp2,Rq. Equivalently, an element of PSLp2,Rq is elliptic if and only if it has a unique fixed

point in H.

Lemma A.2.3. If A � �

�
a b

c d

�
is elliptic, then b � 0 and c � 0.

Proof. If b � 0 or c � 0, then detpAq � ad � 1. So, TrpAq2 � pa � dq2 ¥ 4ad � 4 and A is not

elliptic.

Let A � �

�
a b

c d

�
be an elliptic element of PSLp2,Rq. The association of A to its unique fixed

point fixpAq P H defines a map fix: E Ñ H.

Lemma A.2.4. The unique fixed point of A is

fixpAq �
a� d

2c
� i �

a
4� pa� dq2

2|c|
, (A.2.1)

and the map fix: E Ñ H is analytic.

Proof. The first assertion is a straightforward computation. Since c � 0 by Lemma A.2.3, the map

fix: E Ñ H is analytic.

The elliptic elements of PSLp2,Rq that fix the complex unit i P H are of the form

rotϑ :� �

�
cospϑ{2q sinpϑ{2q

� sinpϑ{2q cospϑ{2q

�
(A.2.2)

for ϑ P p0, 2πq. Every A P E is conjugate to a unique rotϑpAq. This defines a function ϑ : E Ñ p0, 2πq.

The number ϑpAq P p0, 2πq is called the angle of rotation of A.

Lemma A.2.5. The angle of rotation of A is

ϑpAq � arctan

�
�c

|c|
�

a� d

pa� dq2 � 2

a
4� pa� dq2



� εpAq, (A.2.3)
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where

εpAq :�

$'&'%
0, if pa� dq2 ¡ 2 and pa� dq�c

|c| ¡ 0,

π, if pa� dq2   2,

2π, if pa� dq2 ¡ 2 and pa� dq�c
|c|   0.

Moreover, the function ϑ : E Ñ p0, 2πq is analytic.

Proof. The number ϑpAq can be computed as the complex argument of the complex number

dA

dz

∣∣∣∣
z�fixA

�

�
pa� dq2

2
� 1



� i � pa� dq

c

|c|

a
4� pa� dq2

2
. (A.2.4)

Observe that the imaginary part of (A.2.4) vanishes if and only if a � d � 0, in which case its

real part is equal to �1. This means that the complex number defined by (A.2.4) takes values

inside C ∖ R¥0. If we think of the complex argument of a number inside C ∖ R¥0 as a function

C∖R¥0 Ñ p0, 2πq, then it is analytic. This shows that ϑ : E Ñ p0, 2πq is an analytic function.

Lemma A.2.6. The map

pfix, ϑq : E Ñ H� p0, 2πq

is an analytic diffeomorphism that identifies the subset of elliptic elements in PSLp2,Rq with an

open ball.

Proof. We explained above that the map pfix, ϑq is analytic. The inverse map sends a point z �

x� i � y P H and an angle ϑ P p0, 2πq to the elliptic element

rotϑpzq � �

�
cospϑ{2q � xy�1 sinpϑ{2q px2y�1 � yq sinpϑ{2q

�y�1 sinpϑ{2q cospϑ{2q � xy�1 sinpϑ{2q

�
. (A.2.5)

Indeed, an immediate computation gives

fixprotϑpzqq �
�2xy�1 sinpϑ{2q

�2y�1 sinpϑ{2q
� i �

2 sinpϑ{2q

2y�1 sinpϑ{2q

� x� iy,

and

ϑprotϑpzqq � arg

��
4 cospϑ{2q2

2
� 1



� i � p2 cospϑ{2qq � p�1q �

2 sinpϑ{2q

2



� argpcospϑq � i sinpϑqq

� ϑ.

Definition A.2.7. The elements of PSLp2,Rq whose trace in absolute value is equal to 2 are called

parabolic. Parabolic elements are those that have a unique fixed point of the boundary of H. There

are two conjugacy classes of parabolic elements represented by

par� :� �

�
1 1

0 1

�
and par� :� �

�
1 0

1 1

�
. (A.2.6)

90



The elements conjugate to par� are called positively parabolic and those conjugate to par� negatively

parabolic. Each conjugacy class of parabolic elements is an open annulus whose closures intersect

at the identity.

The elements of PSLp2,Rq with a trace larger than 2 in absolute value are called hyperbolic.

Hyperbolic elements have precisely two fixed points on the boundary of H. A hyperbolic element

of PSLp2,Rq is always conjugate to a diagonal element

hypλ :� �

�
λ 0

0 λ�1

�
,

for a unique λ ¡ 0. Hyperbolic conjugacy classes are open annuli.

Elliptic, parabolic, and hyperbolic conjugacy classes foliate PSLp2,Rq in a way that is illustrated

on Figure A.1.

I



Figure A.1: The elliptic conjugacy classes are drawn in green. They foliate an open ball into disks.
The open ball is bounded by the two parabolic conjugacy classes which have the shape of two red
cones joined at the identity. The hyperbolic conjugacy classes foliate an open solid torus, bounded
by the red cones, into blue annuli.

The next lemma describes the centralizers of elements of PSLp2,Rq according to their conjugacy

class.

Lemma A.2.8. The centralizers of rotϑ, hypλ and par� are given by

1. Zprotϑq � trotθ : θ P r0, 2πqu � PSOp2,Rq.

2. Zphypλq � thypt : t ¡ 0u � R¡0.

3. Zppar�q �

#�
1 x

0 1

�
: x P R

+
� R.

It is worth noticing that the centralizer of an element of PSLp2,Rq always consists of the identity
element and of elements of the same nature (i.e. elliptic, parabolic, and hyperbolic). In particular,

two elements of PSLp2,Rq different from the identity commute if and only if they have the same

set of fixed points in HY BH.
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